
How do you use the binomial Theorem to expand $ {\left( {x + 2} \right)^4} $ ?
Answer
452.4k+ views
Hint: In order to determine the expansion of the above function using binomial theorem, compare it with the form \[{\left( {x + y} \right)^n}\]to find our the value of x and y and use the binomial theorem $ {\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}.{x^{n - r}}.{y^r}} $ by putting the value of x and y and expand the summation .Simplifying the equation you will get your required result.
Complete step-by-step answer:
We are given a function $ {\left( {x + 2} \right)^4} $ , and we have to expand this function with the help of binomial theorem.
Let’s first understand why we are using binomial theorem. The reason is pretty simple, because the power of the function is large. When the power of any function increases the expansion becomes really very tough and lengthy.
In such a situation, binomial theorems come into play which provide a simple formula to expand any function of the form \[{\left( {x + y} \right)^n}\]with the use of $ ^n{C_r} $ .
According to Binomial theorem:
$ {\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}.{x^{n - r}}.{y^r}} $ --------(1)
where $ ^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} $ , $ n \in N,x,y \in R $
If we expand the summation, we get
\[{\left( {x + y} \right)^n} = {}^n{C_0}.{x^n}{ + ^n}{C_1}.{x^{n - 1}}.{y^1} + {}^n{C_2}.{x^{n - 2}}{y^2} + {}^n{C_3}.{x^{n - 3}}{y^3} + ....... + {}^n{C_n}{y^n}\]
According to our question, we have to expand $ {\left( {x + 2} \right)^4} $ ,so if we compare this with \[{\left( {x + y} \right)^n}\]
We get $ n = 4 $ , $ x = x\,and\,y = 2 $
Putting these values in the binomial theorem (1) , we get
$ {\left( {x + 2} \right)^4} = \sum\limits_{r = 0}^4 {^4{C_r}.{x^{4 - r}}.{{\left( 2 \right)}^r}} $
Expanding the summation, we get
$
{\left( {x + 2} \right)^4} = {}^4{C_0}.{x^4}{ + ^4}{C_1}.{x^{4 - 1}}.\left( {{2^1}} \right) + {}^4{C_2}.{x^{4 - 2}}\left( {{2^2}} \right) + {}^4{C_3}.{x^{4 - 3}}\left( {{2^3}} \right) + {}^4{C_4}\left( {{2^4}} \right) \\
= {}^4{C_0}.{x^4}{ + ^4}{C_1}.{x^3}.\left( {{2^1}} \right) + {}^4{C_2}.{x^2}\left( {{2^2}} \right) + {}^4{C_3}.{x^1}\left( {{2^3}} \right) + {}^4{C_4}\left( {{2^4}} \right) \\
= \left( 1 \right).{x^4} + \left( 4 \right).{x^3}.\left( {{2^1}} \right) + \left( 6 \right).{x^2}\left( 4 \right) + 4.x\left( 8 \right) + \left( 1 \right)\left( {16} \right) \\
= {x^4} + 8{x^3} + 24{x^2} + 32x + 16 \;
$
$ \therefore {\left( {x + 2} \right)^4} = {x^4} + 8{x^3} + 24{x^2} + 32x + 16 $
Therefore, the binomial expansion of the function $ {\left( {x + 2} \right)^4} $ is equal to
$ {x^4} + 8{x^3} + 24{x^2} + 32x + 16 $ .
So, the correct answer is “ $ {x^4} + 8{x^3} + 24{x^2} + 32x + 16 $ ”.
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we define it as $ 0! = 1 $ .
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Complete step-by-step answer:
We are given a function $ {\left( {x + 2} \right)^4} $ , and we have to expand this function with the help of binomial theorem.
Let’s first understand why we are using binomial theorem. The reason is pretty simple, because the power of the function is large. When the power of any function increases the expansion becomes really very tough and lengthy.
In such a situation, binomial theorems come into play which provide a simple formula to expand any function of the form \[{\left( {x + y} \right)^n}\]with the use of $ ^n{C_r} $ .
According to Binomial theorem:
$ {\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}.{x^{n - r}}.{y^r}} $ --------(1)
where $ ^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} $ , $ n \in N,x,y \in R $
If we expand the summation, we get
\[{\left( {x + y} \right)^n} = {}^n{C_0}.{x^n}{ + ^n}{C_1}.{x^{n - 1}}.{y^1} + {}^n{C_2}.{x^{n - 2}}{y^2} + {}^n{C_3}.{x^{n - 3}}{y^3} + ....... + {}^n{C_n}{y^n}\]
According to our question, we have to expand $ {\left( {x + 2} \right)^4} $ ,so if we compare this with \[{\left( {x + y} \right)^n}\]
We get $ n = 4 $ , $ x = x\,and\,y = 2 $
Putting these values in the binomial theorem (1) , we get
$ {\left( {x + 2} \right)^4} = \sum\limits_{r = 0}^4 {^4{C_r}.{x^{4 - r}}.{{\left( 2 \right)}^r}} $
Expanding the summation, we get
$
{\left( {x + 2} \right)^4} = {}^4{C_0}.{x^4}{ + ^4}{C_1}.{x^{4 - 1}}.\left( {{2^1}} \right) + {}^4{C_2}.{x^{4 - 2}}\left( {{2^2}} \right) + {}^4{C_3}.{x^{4 - 3}}\left( {{2^3}} \right) + {}^4{C_4}\left( {{2^4}} \right) \\
= {}^4{C_0}.{x^4}{ + ^4}{C_1}.{x^3}.\left( {{2^1}} \right) + {}^4{C_2}.{x^2}\left( {{2^2}} \right) + {}^4{C_3}.{x^1}\left( {{2^3}} \right) + {}^4{C_4}\left( {{2^4}} \right) \\
= \left( 1 \right).{x^4} + \left( 4 \right).{x^3}.\left( {{2^1}} \right) + \left( 6 \right).{x^2}\left( 4 \right) + 4.x\left( 8 \right) + \left( 1 \right)\left( {16} \right) \\
= {x^4} + 8{x^3} + 24{x^2} + 32x + 16 \;
$
$ \therefore {\left( {x + 2} \right)^4} = {x^4} + 8{x^3} + 24{x^2} + 32x + 16 $
Therefore, the binomial expansion of the function $ {\left( {x + 2} \right)^4} $ is equal to
$ {x^4} + 8{x^3} + 24{x^2} + 32x + 16 $ .
So, the correct answer is “ $ {x^4} + 8{x^3} + 24{x^2} + 32x + 16 $ ”.
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we define it as $ 0! = 1 $ .
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
