
Use Pascal’s triangle to expand${(2x - 3)^5}$ ?
Answer
452.1k+ views
Hint:The given question requires us to find the expansion of the given binomial expression using Pascal’s triangle and binomial theorem. We can find the value of binomial expansion easily. Binomial theorem helps us to expand the powers of binomial expressions easily and can be used to solve the given problem. We must know the formulae of combinations and factorials for solving the given question using the binomial theorem.
Complete step by step answer:
Pascal’s triangle leads to Binomial Expansion. We have to find the binomial expansion of ${(2x - 3)^5}$ . So, using the binomial theorem, the binomial expansion of \[{\left( {x + y} \right)^n}\] is $\sum\nolimits_{r = 0}^n {\left( {^n{C_r}} \right){{\left( x \right)}^{n - r}}{{\left( y \right)}^r}} $.So, the binomial expansion of ${(2x - 3)^5}$ is \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] .
Now, we have to expand the expression \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] and we are done with the binomial expansion of ${(2x - 3)^5}$ .
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{\left( {^5{C_0}} \right){\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( {^5{C_1}} \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {^5{C_2}} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {^5{C_3}} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( {^5{C_4}} \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + \left( {^5{C_5}} \right){\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Substituting the values of factorials, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{{\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( 5 \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {10} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {10} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( 5 \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + {\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Calculating the values of all the terms raised to the powers, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{ 32{x^5} + \left( 5 \right)\left( {16{x^4}} \right)\left( { - 3} \right) + \left( {10} \right)\left( {8{x^3}} \right)\left( 9 \right) \\
+ \left( {10} \right)\left( {4{x^2}} \right)\left( { - 27} \right) + \left( 5 \right)\left( {2x} \right)\left( {81} \right) + \left( 1 \right)\left( { - 243} \right) \right\}\]
Calculating the products and doing calculations, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = 32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243\]
Hence, the value of \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\] .
So, Binomial expansion of ${(2x - 3)^5}$ is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\].
Note:The given problem can be solved by various methods. The easiest way is to apply the concepts of Pascal’s Triangle and Binomial theorem as it is very effective in finding the binomial expansion. The coefficients of the terms of binomial expansion are the building blocks of Pascal's triangle.
Complete step by step answer:
Pascal’s triangle leads to Binomial Expansion. We have to find the binomial expansion of ${(2x - 3)^5}$ . So, using the binomial theorem, the binomial expansion of \[{\left( {x + y} \right)^n}\] is $\sum\nolimits_{r = 0}^n {\left( {^n{C_r}} \right){{\left( x \right)}^{n - r}}{{\left( y \right)}^r}} $.So, the binomial expansion of ${(2x - 3)^5}$ is \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] .
Now, we have to expand the expression \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] and we are done with the binomial expansion of ${(2x - 3)^5}$ .
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{\left( {^5{C_0}} \right){\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( {^5{C_1}} \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {^5{C_2}} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {^5{C_3}} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( {^5{C_4}} \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + \left( {^5{C_5}} \right){\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Substituting the values of factorials, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{{\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( 5 \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {10} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {10} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( 5 \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + {\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Calculating the values of all the terms raised to the powers, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{ 32{x^5} + \left( 5 \right)\left( {16{x^4}} \right)\left( { - 3} \right) + \left( {10} \right)\left( {8{x^3}} \right)\left( 9 \right) \\
+ \left( {10} \right)\left( {4{x^2}} \right)\left( { - 27} \right) + \left( 5 \right)\left( {2x} \right)\left( {81} \right) + \left( 1 \right)\left( { - 243} \right) \right\}\]
Calculating the products and doing calculations, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = 32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243\]
Hence, the value of \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\] .
So, Binomial expansion of ${(2x - 3)^5}$ is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\].
Note:The given problem can be solved by various methods. The easiest way is to apply the concepts of Pascal’s Triangle and Binomial theorem as it is very effective in finding the binomial expansion. The coefficients of the terms of binomial expansion are the building blocks of Pascal's triangle.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
