
Use Pascal’s triangle to expand${(2x - 3)^5}$ ?
Answer
547.2k+ views
Hint:The given question requires us to find the expansion of the given binomial expression using Pascal’s triangle and binomial theorem. We can find the value of binomial expansion easily. Binomial theorem helps us to expand the powers of binomial expressions easily and can be used to solve the given problem. We must know the formulae of combinations and factorials for solving the given question using the binomial theorem.
Complete step by step answer:
Pascal’s triangle leads to Binomial Expansion. We have to find the binomial expansion of ${(2x - 3)^5}$ . So, using the binomial theorem, the binomial expansion of \[{\left( {x + y} \right)^n}\] is $\sum\nolimits_{r = 0}^n {\left( {^n{C_r}} \right){{\left( x \right)}^{n - r}}{{\left( y \right)}^r}} $.So, the binomial expansion of ${(2x - 3)^5}$ is \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] .
Now, we have to expand the expression \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] and we are done with the binomial expansion of ${(2x - 3)^5}$ .
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{\left( {^5{C_0}} \right){\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( {^5{C_1}} \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {^5{C_2}} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {^5{C_3}} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( {^5{C_4}} \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + \left( {^5{C_5}} \right){\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Substituting the values of factorials, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{{\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( 5 \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {10} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {10} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( 5 \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + {\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Calculating the values of all the terms raised to the powers, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{ 32{x^5} + \left( 5 \right)\left( {16{x^4}} \right)\left( { - 3} \right) + \left( {10} \right)\left( {8{x^3}} \right)\left( 9 \right) \\
+ \left( {10} \right)\left( {4{x^2}} \right)\left( { - 27} \right) + \left( 5 \right)\left( {2x} \right)\left( {81} \right) + \left( 1 \right)\left( { - 243} \right) \right\}\]
Calculating the products and doing calculations, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = 32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243\]
Hence, the value of \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\] .
So, Binomial expansion of ${(2x - 3)^5}$ is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\].
Note:The given problem can be solved by various methods. The easiest way is to apply the concepts of Pascal’s Triangle and Binomial theorem as it is very effective in finding the binomial expansion. The coefficients of the terms of binomial expansion are the building blocks of Pascal's triangle.
Complete step by step answer:
Pascal’s triangle leads to Binomial Expansion. We have to find the binomial expansion of ${(2x - 3)^5}$ . So, using the binomial theorem, the binomial expansion of \[{\left( {x + y} \right)^n}\] is $\sum\nolimits_{r = 0}^n {\left( {^n{C_r}} \right){{\left( x \right)}^{n - r}}{{\left( y \right)}^r}} $.So, the binomial expansion of ${(2x - 3)^5}$ is \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] .
Now, we have to expand the expression \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] and we are done with the binomial expansion of ${(2x - 3)^5}$ .
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{\left( {^5{C_0}} \right){\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( {^5{C_1}} \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {^5{C_2}} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {^5{C_3}} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( {^5{C_4}} \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + \left( {^5{C_5}} \right){\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Substituting the values of factorials, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{{\left( {2x} \right)^5}{\left( { - 3} \right)^0} + \left( 5 \right){\left( {2x} \right)^4}{\left( { - 3} \right)^1} + \left( {10} \right){\left( {2x} \right)^3}{\left( { - 3} \right)^2} \\
+ \left( {10} \right){\left( {2x} \right)^2}{\left( { - 3} \right)^3} + \left( 5 \right){\left( {2x} \right)^1}{\left( { - 3} \right)^4} + {\left( {2x} \right)^0}{\left( { - 3} \right)^5}\right\}\]
Calculating the values of all the terms raised to the powers, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = \left\{ 32{x^5} + \left( 5 \right)\left( {16{x^4}} \right)\left( { - 3} \right) + \left( {10} \right)\left( {8{x^3}} \right)\left( 9 \right) \\
+ \left( {10} \right)\left( {4{x^2}} \right)\left( { - 27} \right) + \left( 5 \right)\left( {2x} \right)\left( {81} \right) + \left( 1 \right)\left( { - 243} \right) \right\}\]
Calculating the products and doing calculations, we get,
\[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} = 32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243\]
Hence, the value of \[\sum\nolimits_{r = 0}^5 {\left( {^5{C_r}} \right){{\left( {2x} \right)}^{5 - r}}{{\left( { - 3} \right)}^r}} \] is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\] .
So, Binomial expansion of ${(2x - 3)^5}$ is \[\left( {32{x^5} - 240{x^4} + 720{x^3} - 1080{x^2} + 810x - 243} \right)\].
Note:The given problem can be solved by various methods. The easiest way is to apply the concepts of Pascal’s Triangle and Binomial theorem as it is very effective in finding the binomial expansion. The coefficients of the terms of binomial expansion are the building blocks of Pascal's triangle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

