Answer
Verified
400.8k+ views
Hint: An asymptote can be expressed as the line on the graph of a function representing a value towards which the function may approach and it does not reach with certain exceptions. Horizontal asymptotes are the horizontal lines for which the graph of the function approaches as “x” tends to infinity. Here we will take an example to find the horizontal asymptote using limits.
Complete step-by-step solution:
Let us take an example,
$f(x) = \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Apply the limit in the above expression which tends to infinity.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Since, the power of “x” is cube therefore divide the above expression in the numerator and the denominator by common factors from the numerator and the denominator cancel each other. Also using the laws of power and exponent to simplify.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}} + \dfrac{d}{{{x^3}}}}}{{r + \dfrac{s}{x} + \dfrac{t}{{{x^2}}} + \dfrac{u}{{{x^3}}}}}$
Anything upon infinity gives resultant value as zero, when applied limit “x” and placing value as infinity.
$ = \dfrac{a}{r}$
And hence the required horizontal asymptote is $y = \dfrac{a}{r}$
Additional Information: Remember the seven basic rules of the exponent or the laws of exponents to solve these types of questions. Make sure to go through the below mentioned rules, it describes how to solve different types of exponents problems and how to add, subtract, multiply and divide the exponents.
-Product of powers rule
-Quotient of powers rule
-Power of a power rule
-Power of a product rule
-Power of a quotient rule
-Zero power rule
-Negative exponent rule
Note: Always remember that any number upon infinity always gives infinity whereas any number upon zero always gives us the value as the infinity. Be careful while placing the limits in the equation, first of all remove all the common factors from the equation. Always remember that the common factors from the numerator and the denominator cancel each other.
Complete step-by-step solution:
Let us take an example,
$f(x) = \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Apply the limit in the above expression which tends to infinity.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Since, the power of “x” is cube therefore divide the above expression in the numerator and the denominator by common factors from the numerator and the denominator cancel each other. Also using the laws of power and exponent to simplify.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}} + \dfrac{d}{{{x^3}}}}}{{r + \dfrac{s}{x} + \dfrac{t}{{{x^2}}} + \dfrac{u}{{{x^3}}}}}$
Anything upon infinity gives resultant value as zero, when applied limit “x” and placing value as infinity.
$ = \dfrac{a}{r}$
And hence the required horizontal asymptote is $y = \dfrac{a}{r}$
Additional Information: Remember the seven basic rules of the exponent or the laws of exponents to solve these types of questions. Make sure to go through the below mentioned rules, it describes how to solve different types of exponents problems and how to add, subtract, multiply and divide the exponents.
-Product of powers rule
-Quotient of powers rule
-Power of a power rule
-Power of a product rule
-Power of a quotient rule
-Zero power rule
-Negative exponent rule
Note: Always remember that any number upon infinity always gives infinity whereas any number upon zero always gives us the value as the infinity. Be careful while placing the limits in the equation, first of all remove all the common factors from the equation. Always remember that the common factors from the numerator and the denominator cancel each other.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Name 10 Living and Non living things class 9 biology CBSE