
How do you use De Moivre’s theorem to simplify $ {{\left( 2+2i \right)}^{6}} $ ?
Answer
469.8k+ views
Hint:
We start solving the problem by making use of the result $ {{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}} $ for the given complex number. We then make the necessary calculations to the complex number present inside the exponent and then make use of the fact that \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] and \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] to proceed through the problem. We then make use of the De Moivre’s theorem that if a complex number is in the form of $ {{\left( \cos x+i\sin x \right)}^{n}} $ , then it is equal to $ \left( \cos \left( nx \right)+i\sin \left( nx \right) \right) $ to proceed further through the problem. We then make use of the results \[\sin \left( \dfrac{3\pi }{2} \right)=-1\], \[\cos \left( \dfrac{3\pi }{2} \right)=0\] and then make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are asked to apply the De Moivre’s theorem to simplify $ {{\left( 2+2i \right)}^{6}} $ .
Let us assume $ Z={{\left( 2+2i \right)}^{6}} $ .
$ \Rightarrow Z={{\left( 2\left( 1+i \right) \right)}^{6}} $ ---(1).
We know that $ {{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}} $ . Let us use this result in equation (1).
$ \Rightarrow Z={{2}^{6}}{{\left( 1+i \right)}^{6}} $ .
$ \Rightarrow Z=32{{\left( \left( \sqrt{2} \right)\left( \dfrac{1+i}{\sqrt{2}} \right) \right)}^{6}} $ ---(2).
We know that $ {{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}} $ . Let us use this result in equation (2).
$ \Rightarrow Z=32{{\left( \sqrt{2} \right)}^{6}}{{\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)}^{6}} $ .
$ \Rightarrow Z=32\left( 8 \right){{\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)}^{6}} $ ---(3).
We know that \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] and \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. Let us use these results in equation (3).
$ \Rightarrow Z=256{{\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right)}^{6}} $ ---(4).
Now, let us recall the definition of De Moivre’s theorem. We know that De Moivre’s theorem states that if a complex number is in the form of $ {{\left( \cos x+i\sin x \right)}^{n}} $ , then it is equal to $ \left( \cos \left( nx \right)+i\sin \left( nx \right) \right) $ . Let us use this result in equation (4).
$ \Rightarrow Z=256\left( \cos \left( 6\times \dfrac{\pi }{4} \right)+i\sin \left( 6\times \dfrac{\pi }{4} \right) \right) $ .
$ \Rightarrow Z=256\left( \cos \left( \dfrac{3\pi }{2} \right)+i\sin \left( \dfrac{3\pi }{2} \right) \right) $ ---(5).
We know that \[\sin \left( \dfrac{3\pi }{2} \right)=-1\] and \[\cos \left( \dfrac{3\pi }{2} \right)=0\]. Let us use these results in equation (3).
$ \Rightarrow Z=256\left( 0+i\left( -1 \right) \right) $ .
$ \Rightarrow Z=-256i $ .
So, we have found the value of $ {{\left( 2+2i \right)}^{6}} $ as $ -256i $ .
Note:
We should perform each step carefully in order to avoid confusion and calculation mistakes. Whenever we get this type of problems, we first try to convert the given complex number into the form $ {{r}^{n}}{{\left( \cos \theta +i\sin \theta \right)}^{n}} $ to make use of the De Moivre’s theorem. We can also solve this problem by converting the given complex number into the Euler’s form and then making the necessary calculations to get the required answer. Similarly, we can expect the problems to find the Euler’s form of the obtained result.
We start solving the problem by making use of the result $ {{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}} $ for the given complex number. We then make the necessary calculations to the complex number present inside the exponent and then make use of the fact that \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] and \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] to proceed through the problem. We then make use of the De Moivre’s theorem that if a complex number is in the form of $ {{\left( \cos x+i\sin x \right)}^{n}} $ , then it is equal to $ \left( \cos \left( nx \right)+i\sin \left( nx \right) \right) $ to proceed further through the problem. We then make use of the results \[\sin \left( \dfrac{3\pi }{2} \right)=-1\], \[\cos \left( \dfrac{3\pi }{2} \right)=0\] and then make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are asked to apply the De Moivre’s theorem to simplify $ {{\left( 2+2i \right)}^{6}} $ .
Let us assume $ Z={{\left( 2+2i \right)}^{6}} $ .
$ \Rightarrow Z={{\left( 2\left( 1+i \right) \right)}^{6}} $ ---(1).
We know that $ {{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}} $ . Let us use this result in equation (1).
$ \Rightarrow Z={{2}^{6}}{{\left( 1+i \right)}^{6}} $ .
$ \Rightarrow Z=32{{\left( \left( \sqrt{2} \right)\left( \dfrac{1+i}{\sqrt{2}} \right) \right)}^{6}} $ ---(2).
We know that $ {{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}} $ . Let us use this result in equation (2).
$ \Rightarrow Z=32{{\left( \sqrt{2} \right)}^{6}}{{\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)}^{6}} $ .
$ \Rightarrow Z=32\left( 8 \right){{\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)}^{6}} $ ---(3).
We know that \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] and \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. Let us use these results in equation (3).
$ \Rightarrow Z=256{{\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right)}^{6}} $ ---(4).
Now, let us recall the definition of De Moivre’s theorem. We know that De Moivre’s theorem states that if a complex number is in the form of $ {{\left( \cos x+i\sin x \right)}^{n}} $ , then it is equal to $ \left( \cos \left( nx \right)+i\sin \left( nx \right) \right) $ . Let us use this result in equation (4).
$ \Rightarrow Z=256\left( \cos \left( 6\times \dfrac{\pi }{4} \right)+i\sin \left( 6\times \dfrac{\pi }{4} \right) \right) $ .
$ \Rightarrow Z=256\left( \cos \left( \dfrac{3\pi }{2} \right)+i\sin \left( \dfrac{3\pi }{2} \right) \right) $ ---(5).
We know that \[\sin \left( \dfrac{3\pi }{2} \right)=-1\] and \[\cos \left( \dfrac{3\pi }{2} \right)=0\]. Let us use these results in equation (3).
$ \Rightarrow Z=256\left( 0+i\left( -1 \right) \right) $ .
$ \Rightarrow Z=-256i $ .
So, we have found the value of $ {{\left( 2+2i \right)}^{6}} $ as $ -256i $ .
Note:
We should perform each step carefully in order to avoid confusion and calculation mistakes. Whenever we get this type of problems, we first try to convert the given complex number into the form $ {{r}^{n}}{{\left( \cos \theta +i\sin \theta \right)}^{n}} $ to make use of the De Moivre’s theorem. We can also solve this problem by converting the given complex number into the Euler’s form and then making the necessary calculations to get the required answer. Similarly, we can expect the problems to find the Euler’s form of the obtained result.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
