
How do you use De Moivre’s theorem to find $ {{\left( 1+i \right)}^{20}} $ in slandered form?
Answer
562.5k+ views
Hint: We explain the derivation of De Moivre’s theorem from Euler’s theorem. We state the theorems related to the power of $ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ . The given equation $ \left( 1+i \right) $ is not in unit circle region. We convert it by dividing with its modulus value. Then we apply the theorems to final answer.
Complete step by step answer:
De Moivre’s theorem is actually a derivation of the Euler’s theorem. The theorem tells us
$ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ . Here $ i $ represents the imaginary value where $ i=\sqrt{-1} $ .
The equation represents a circle of the unit radius in the complex plane. It is also called Gauss’s plane.
Here X-axis is a regular real axis but the Y-axis is regarded as the imaginary axis.
We also have the indices theorem for $ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ where
$ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ .
The given imaginary number $ \left( 1+i \right) $ doesn’t lie in the unit circle as $ \left| 1+i \right|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2} $ .
We need to convert it into a unit circle equation to apply De Moivre’s theorem directly.
We can divide the equation $ \left( 1+i \right) $ by its norm $ \left| 1+i \right|=\sqrt{2} $ .
We get that $ \left( 1+i \right)=\sqrt{2}\left( \dfrac{1+i}{\sqrt{2}} \right)=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ .
Now if $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ then \[\left| z \right|=\sqrt{{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}}=1\].
We can apply De Moivre’s theorem directly for z where $ \left( 1+i \right)=\sqrt{2}z $ .
Therefore, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
Now we solve both the constant and the imaginary part.
From indices theorem we know \[{{\left( \sqrt{2} \right)}^{20}}={{\left( {{2}^{\dfrac{1}{2}}} \right)}^{20}}={{2}^{\dfrac{1}{2}\times 20}}={{2}^{10}}\].
We know $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)=\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right] $
Now, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
We solve for \[{{\left( z \right)}^{20}}\] where \[{{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}}\].
Applying $ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ we get,
\[\begin{align}
& {{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}} \\
& =\cos \left( 20\times \dfrac{\pi }{4} \right)+i\sin \left( 20\times \dfrac{\pi }{4} \right) \\
& =\cos \left( 5\pi \right)+i\sin \left( 5\pi \right) \\
\end{align}\]
Now we solve for the angle $ 5\pi $ . We get \[\cos \left( 5\pi \right)+i\sin \left( 5\pi \right)=-1\].
Therefore, \[{{\left( z \right)}^{20}}=-1\].
We get \[{{\left( 1+i \right)}^{20}}=\left( -1 \right)\times {{2}^{10}}=-{{2}^{10}}\].
Note:
We need to remember that in the complex plane these coordinates are related in the same form as the real plane. For coordinates $ \left( x,y \right) $ , we have $ x=r\cos \theta $ and $ y=r\sin \theta $ . Here $ \theta $ is the angle of the joining line of the point in the unit circle with the origin.
Complete step by step answer:
De Moivre’s theorem is actually a derivation of the Euler’s theorem. The theorem tells us
$ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ . Here $ i $ represents the imaginary value where $ i=\sqrt{-1} $ .
The equation represents a circle of the unit radius in the complex plane. It is also called Gauss’s plane.
Here X-axis is a regular real axis but the Y-axis is regarded as the imaginary axis.
We also have the indices theorem for $ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ where
$ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ .
The given imaginary number $ \left( 1+i \right) $ doesn’t lie in the unit circle as $ \left| 1+i \right|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2} $ .
We need to convert it into a unit circle equation to apply De Moivre’s theorem directly.
We can divide the equation $ \left( 1+i \right) $ by its norm $ \left| 1+i \right|=\sqrt{2} $ .
We get that $ \left( 1+i \right)=\sqrt{2}\left( \dfrac{1+i}{\sqrt{2}} \right)=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ .
Now if $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ then \[\left| z \right|=\sqrt{{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}}=1\].
We can apply De Moivre’s theorem directly for z where $ \left( 1+i \right)=\sqrt{2}z $ .
Therefore, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
Now we solve both the constant and the imaginary part.
From indices theorem we know \[{{\left( \sqrt{2} \right)}^{20}}={{\left( {{2}^{\dfrac{1}{2}}} \right)}^{20}}={{2}^{\dfrac{1}{2}\times 20}}={{2}^{10}}\].
We know $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)=\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right] $
Now, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
We solve for \[{{\left( z \right)}^{20}}\] where \[{{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}}\].
Applying $ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ we get,
\[\begin{align}
& {{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}} \\
& =\cos \left( 20\times \dfrac{\pi }{4} \right)+i\sin \left( 20\times \dfrac{\pi }{4} \right) \\
& =\cos \left( 5\pi \right)+i\sin \left( 5\pi \right) \\
\end{align}\]
Now we solve for the angle $ 5\pi $ . We get \[\cos \left( 5\pi \right)+i\sin \left( 5\pi \right)=-1\].
Therefore, \[{{\left( z \right)}^{20}}=-1\].
We get \[{{\left( 1+i \right)}^{20}}=\left( -1 \right)\times {{2}^{10}}=-{{2}^{10}}\].
Note:
We need to remember that in the complex plane these coordinates are related in the same form as the real plane. For coordinates $ \left( x,y \right) $ , we have $ x=r\cos \theta $ and $ y=r\sin \theta $ . Here $ \theta $ is the angle of the joining line of the point in the unit circle with the origin.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

