
How many unpaired electrons are present in \[M{n^{2 + }}\] ion?
Answer
508.8k+ views
Hint: An unpaired electron is a single electron that occupies an atom's orbital rather than as part of a pair of electrons. An atom's atomic orbitals have the ability to hold two electrons with opposite spins.
Complete answer:
The total number of electrons in a neutral element is represented by its electronic configuration. To find the number of electrons in an atom, we should add all the superscripts together. We know that the electrons are filled in order of increasing energies according to Aufbau's law.
So, the electronic configuration of Mn is: 25
that is, \[1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^5}4{s^2}\]
Also the electronic configuration of \[M{n^{2 + }}\] is, 23
that is, \[1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^5}\]
We know that each of an atom's atomic orbitals (defined by the three quantum numbers n, l, and m) can hold a maximum of two electrons with opposite spins, known as an electron pair.
Here, since electrons can only have a pair until any orbital in "degenerate" has been singly filled; there are five orbitals in the 3d subshell, each containing two electrons.
Hence, there is just one electron in each orbital.
As there are five 3d orbitals here, each orbital has a single electron.
Hence, \[M{n^{2 + }}\] has 5 unpaired electrons.
Hence, there are five unpaired electrons in \[M{n^{2 + }}\].
Note:
Remember the Aufbau principle which is also known as the Aufbauprinzip (building-up principle), states that in the ground state of an atom or ion, electrons fill atomic orbitals of the lowest possible energy levels before moving on to higher levels.
Complete answer:
The total number of electrons in a neutral element is represented by its electronic configuration. To find the number of electrons in an atom, we should add all the superscripts together. We know that the electrons are filled in order of increasing energies according to Aufbau's law.
So, the electronic configuration of Mn is: 25
that is, \[1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^5}4{s^2}\]
Also the electronic configuration of \[M{n^{2 + }}\] is, 23
that is, \[1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^5}\]
We know that each of an atom's atomic orbitals (defined by the three quantum numbers n, l, and m) can hold a maximum of two electrons with opposite spins, known as an electron pair.
Here, since electrons can only have a pair until any orbital in "degenerate" has been singly filled; there are five orbitals in the 3d subshell, each containing two electrons.
Hence, there is just one electron in each orbital.
As there are five 3d orbitals here, each orbital has a single electron.
Hence, \[M{n^{2 + }}\] has 5 unpaired electrons.
Hence, there are five unpaired electrons in \[M{n^{2 + }}\].
Note:
Remember the Aufbau principle which is also known as the Aufbauprinzip (building-up principle), states that in the ground state of an atom or ion, electrons fill atomic orbitals of the lowest possible energy levels before moving on to higher levels.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

