
How many two-digit numbers are divisible by 13?
Answer
601.8k+ views
Hint: As we know that the first two-digit number which is divisible by 13 is 13, the second one is 26 and so on but the last number is 91. Now we will use the concept of arithmetic progression to find the total number between 13 to 91.
Complete step-by-step answer:
We have the numbers which are divisible by 13 are as follows,
13, 26, 39.................91.
The above progression is an arithmetic progression having the first term is 13, the common difference is 13 and the last term is 91.
Now, we will find the total number of term in the arithmetic progression by the formula as given below;
$\text{last term=}a+(n-1)d$ where “a” is the first term , n is the total number of terms and “d” is the common difference of the arithmetic progression.
And we have a=13, n=? and d= 13,
\[\begin{align}
& \Rightarrow 91=13+(n-1)13 \\
& \Rightarrow 91-13=(n-1)13 \\
& \Rightarrow \dfrac{78}{13}=(n-1) \\
& \Rightarrow 6=(n-1) \\
& \Rightarrow n=6+1=7 \\
\end{align}\]
Here, we can see that there are a total 7 terms in the above arithmetic progression.
Therefore, the total two digit number is 7 which is divisible by 13.
Note: Just remember the formula of the arithmetic progression for the last term very clearly and also go through the other formulae of arithmetic progression as it will be very helpful in these types of questions. Also be careful while doing calculation.
Complete step-by-step answer:
We have the numbers which are divisible by 13 are as follows,
13, 26, 39.................91.
The above progression is an arithmetic progression having the first term is 13, the common difference is 13 and the last term is 91.
Now, we will find the total number of term in the arithmetic progression by the formula as given below;
$\text{last term=}a+(n-1)d$ where “a” is the first term , n is the total number of terms and “d” is the common difference of the arithmetic progression.
And we have a=13, n=? and d= 13,
\[\begin{align}
& \Rightarrow 91=13+(n-1)13 \\
& \Rightarrow 91-13=(n-1)13 \\
& \Rightarrow \dfrac{78}{13}=(n-1) \\
& \Rightarrow 6=(n-1) \\
& \Rightarrow n=6+1=7 \\
\end{align}\]
Here, we can see that there are a total 7 terms in the above arithmetic progression.
Therefore, the total two digit number is 7 which is divisible by 13.
Note: Just remember the formula of the arithmetic progression for the last term very clearly and also go through the other formulae of arithmetic progression as it will be very helpful in these types of questions. Also be careful while doing calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

