
Two trees, A and B are on the same side of a river. From a point C in the river the distance of the tree A and B is 250 m and 300 m respectively. If the angle C is ${45^0}$, find the distance between the trees (use $\sqrt 2 = 1.44$).
Answer
616.5k+ views
Hint- Here, we are given two sides and one interior angle of a triangle ABC and we have to find the third side of this triangle. This can be also done by using the cosine rule in the triangle ABC which is ${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AC}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{C}}} \right)$
Complete step-by-step solution -
Let us draw a triangle ABC with points A and B representing two trees on the same side of the river and C is a point in the river as shown in the figure.
Given, AC = 250 m, BC = 300 m, $\angle {\text{C}} = {45^0}$
According to cosine rule (for the length AB) applied on any triangle ABC, we can write
${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AC}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{C}}} \right){\text{ }} \to {\text{(1)}}$
By substituting AC = 250, BC = 300 and $\angle {\text{C}} = {45^0}$ in equation (1), we get
$ \Rightarrow {\left( {{\text{AB}}} \right)^2} = {\left( {{\text{250}}} \right)^2} + {\left( {{\text{300}}} \right)^2} - 2\left( {{\text{250}}} \right)\left( {{\text{300}}} \right)\cos \left( {{{45}^0}} \right){\text{ }} \to {\text{(2)}}$
According to the general trigonometric table,
$\cos {45^0} = \dfrac{1}{{\sqrt 2 }}{\text{ }} \to {\text{(3)}}$
By substituting equation (3) in equation (2), we get
$ \Rightarrow {\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - 150000\left( {\dfrac{1}{{\sqrt 2 }}} \right)$
Using $\sqrt 2 = 1.44$, the above equation becomes
$
{\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - 150000\left( {\dfrac{1}{{1.44}}} \right) \\
\Rightarrow {\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - \dfrac{{312500}}{3} \\
\Rightarrow {\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - \dfrac{{312500}}{3} \\
\Rightarrow {\left( {{\text{AB}}} \right)^2} = \dfrac{{145000}}{3} \\
$
By taking square root on both sides of the above equation, we get
$ \Rightarrow {\text{AB}} = \sqrt {\dfrac{{145000}}{3}} = 219.85{\text{ m}}$
Therefore, the distance between the trees A and B is 219.85 m
Note- In general, there are three cosine rules which can be applied in any triangle ABC. The length AB is given by ${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AC}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{C}}} \right)$, the length BC is given by \[{\left( {{\text{BC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{AC}}} \right)^2} - 2\left( {{\text{AB}}} \right)\left( {{\text{AC}}} \right)\cos \left( {\angle {\text{A}}} \right)\] and the length AC is given by \[{\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AB}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{B}}} \right)\].
Complete step-by-step solution -
Let us draw a triangle ABC with points A and B representing two trees on the same side of the river and C is a point in the river as shown in the figure.
Given, AC = 250 m, BC = 300 m, $\angle {\text{C}} = {45^0}$
According to cosine rule (for the length AB) applied on any triangle ABC, we can write
${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AC}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{C}}} \right){\text{ }} \to {\text{(1)}}$
By substituting AC = 250, BC = 300 and $\angle {\text{C}} = {45^0}$ in equation (1), we get
$ \Rightarrow {\left( {{\text{AB}}} \right)^2} = {\left( {{\text{250}}} \right)^2} + {\left( {{\text{300}}} \right)^2} - 2\left( {{\text{250}}} \right)\left( {{\text{300}}} \right)\cos \left( {{{45}^0}} \right){\text{ }} \to {\text{(2)}}$
According to the general trigonometric table,
$\cos {45^0} = \dfrac{1}{{\sqrt 2 }}{\text{ }} \to {\text{(3)}}$
By substituting equation (3) in equation (2), we get
$ \Rightarrow {\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - 150000\left( {\dfrac{1}{{\sqrt 2 }}} \right)$
Using $\sqrt 2 = 1.44$, the above equation becomes
$
{\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - 150000\left( {\dfrac{1}{{1.44}}} \right) \\
\Rightarrow {\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - \dfrac{{312500}}{3} \\
\Rightarrow {\left( {{\text{AB}}} \right)^2} = 62500 + 90000 - \dfrac{{312500}}{3} \\
\Rightarrow {\left( {{\text{AB}}} \right)^2} = \dfrac{{145000}}{3} \\
$
By taking square root on both sides of the above equation, we get
$ \Rightarrow {\text{AB}} = \sqrt {\dfrac{{145000}}{3}} = 219.85{\text{ m}}$
Therefore, the distance between the trees A and B is 219.85 m
Note- In general, there are three cosine rules which can be applied in any triangle ABC. The length AB is given by ${\left( {{\text{AB}}} \right)^2} = {\left( {{\text{AC}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AC}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{C}}} \right)$, the length BC is given by \[{\left( {{\text{BC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{AC}}} \right)^2} - 2\left( {{\text{AB}}} \right)\left( {{\text{AC}}} \right)\cos \left( {\angle {\text{A}}} \right)\] and the length AC is given by \[{\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{BC}}} \right)^2} - 2\left( {{\text{AB}}} \right)\left( {{\text{BC}}} \right)\cos \left( {\angle {\text{B}}} \right)\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

