
Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ=2\angle OPQ$.
Answer
602.4k+ views
Prove $\angle TPQ$ and $\angle TQP$ are equal using congruence. Express $\angle TPQ$ or $\angle TQP$ in terms of $\angle OPQ$ using the fact that $\angle OPT=\angle OPQ+\angle QPT$. Then, apply the property of the sum of angles of the triangle on $\Delta TPQ$. Hence, find the relation between $\angle PTQ$ and $\angle OPQ$.
Complete step-by-step answer:
Given, PT and QT are tangents to the circle with centre O.
To prove $\angle PTQ=2\angle OPQ$.
Let us assume $\angle OPQ$ to be $x$.
We know that, OP = OQ as they are the radii of the circle.
Therefore, $\angle OPQ=\angle OQP=x\left( isosceles\Delta \right)$.
Join OT.
In $\Delta OPT$and $\Delta OQT$,
OP = OQ as they are radii of the circle.
$\angle OPT=\angle OQT=90{}^\circ $as PT and QT are tangents to the circle OT = OT (common side).
$\therefore $, by the ASS criteria of congruence,
$\Delta POT\cong \Delta QOT$.
Since $\Delta POT\cong \Delta QOT$,
$\begin{align}
& PT=QT \\
& \therefore \angle TPQ=\angle TQP\ \ \ \ \ \ \ \left( isosceles\ triangle \right) \\
\end{align}$
Now, let us consider $\Delta PTQ$,
$\angle PQT+\angle QPT+\angle PTQ=180{}^\circ $
But $\angle PQT=\angle QPT$(proved above)
$\begin{align}
& \Rightarrow 2\left( \angle PQT \right)+\angle PTQ=180{}^\circ \\
& \angle PQT=\angle OPT-\angle OPQ \\
& \Rightarrow \angle PQT=90{}^\circ -\angle OPQ\ \ \ \ \ \ \ \ \ \ \ \left( PT\ \text{is a tangent} \right) \\
\end{align}$
Putting the value of $\angle PQT$ in the equation $2\left( \angle PQT \right)+\angle PTQ=180{}^\circ $, we get,
$\begin{align}
& 2\left( 90{}^\circ -\angle OPQ \right)+\angle PTQ=180{}^\circ \\
& 180{}^\circ -2\angle OPQ+\angle PTQ=180{}^\circ \\
& \Rightarrow \angle PTQ=2\angle OPQ \\
\end{align}$
Hence proved.
Note: (1) Sum of angles of a triangle is $180{}^\circ $.
(2) Angle between the tangent and the line from the centre to the point where the tangent touches the circle is $90{}^\circ $.
(3) Angles adjacent to the equal sides of an isosceles triangle are equal.
Complete step-by-step answer:
Given, PT and QT are tangents to the circle with centre O.
To prove $\angle PTQ=2\angle OPQ$.
Let us assume $\angle OPQ$ to be $x$.
We know that, OP = OQ as they are the radii of the circle.
Therefore, $\angle OPQ=\angle OQP=x\left( isosceles\Delta \right)$.
Join OT.
In $\Delta OPT$and $\Delta OQT$,
OP = OQ as they are radii of the circle.
$\angle OPT=\angle OQT=90{}^\circ $as PT and QT are tangents to the circle OT = OT (common side).
$\therefore $, by the ASS criteria of congruence,
$\Delta POT\cong \Delta QOT$.
Since $\Delta POT\cong \Delta QOT$,
$\begin{align}
& PT=QT \\
& \therefore \angle TPQ=\angle TQP\ \ \ \ \ \ \ \left( isosceles\ triangle \right) \\
\end{align}$
Now, let us consider $\Delta PTQ$,
$\angle PQT+\angle QPT+\angle PTQ=180{}^\circ $
But $\angle PQT=\angle QPT$(proved above)
$\begin{align}
& \Rightarrow 2\left( \angle PQT \right)+\angle PTQ=180{}^\circ \\
& \angle PQT=\angle OPT-\angle OPQ \\
& \Rightarrow \angle PQT=90{}^\circ -\angle OPQ\ \ \ \ \ \ \ \ \ \ \ \left( PT\ \text{is a tangent} \right) \\
\end{align}$
Putting the value of $\angle PQT$ in the equation $2\left( \angle PQT \right)+\angle PTQ=180{}^\circ $, we get,
$\begin{align}
& 2\left( 90{}^\circ -\angle OPQ \right)+\angle PTQ=180{}^\circ \\
& 180{}^\circ -2\angle OPQ+\angle PTQ=180{}^\circ \\
& \Rightarrow \angle PTQ=2\angle OPQ \\
\end{align}$
Hence proved.
Note: (1) Sum of angles of a triangle is $180{}^\circ $.
(2) Angle between the tangent and the line from the centre to the point where the tangent touches the circle is $90{}^\circ $.
(3) Angles adjacent to the equal sides of an isosceles triangle are equal.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

