
Two people can paint a house in $14$ hours. Working individually, one of the people takes $2$ hours more than it takes the other person to paint the house. How much time will each person take while working individually to paint the house ? (approx.)
Choose the correct option ,
A) $29$ hrs
B) $30$ hrs
C) $28$ hrs
D) None of these
Answer
551.4k+ views
Hint: For solving the particular problem we have to let that it will take $x$ hrs long when one person is working individually to paint the house . and must consider that Working individually, one of the people takes $2$ hours more than it takes the other person to paint the house.
Complete step-by-step solution:
It is given that ,
Two people can paint a house together in $14$ hours.
It will take $x$ hrs long when one person is working individually to paint the house .
And one of the people takes $2$ hours more than it takes the other person to paint the house when they work individually.
According to the given statement . we can write ,
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{{x + 2}}$
According to the question ,
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{{x + 2}} = \dfrac{1}{{14}}$
$
\Rightarrow \dfrac{{2x + 2}}{{{x^2} + 2x}} = \dfrac{1}{{14}} \\
\Rightarrow 28x + 28 = {x^2} + 2x \\
\Rightarrow {x^2} - 26x - 28 = 0 \\
$
For finding roots of the original equation, we have to use quadratic formula i.e.,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now identify $a,b,c$ from the original equation given below,
$ \Rightarrow {x^2} - 26x - 28 = 0$
Now compare the coefficient ,
$
a = 1, \\
b = - 26, \\
c = - 28. \\
$
Put these values into the formula of finding the roots of quadratic equations,
$
\Rightarrow \dfrac{{ - 26 \pm \sqrt {{{(26)}^2} - 4 \times 1 \times ( - 28)} }}{{2 \times 1}} \\
\Rightarrow \dfrac{{26 \pm \sqrt {788} }}{2} \\
\Rightarrow \dfrac{{26 \pm 28.07}}{2} \\
$
After simplifying and by evaluating exponents and square root of the above equation we get the following simplified expression,
$x = \dfrac{{26 \pm 28.07}}{2}$
To find the roots of the equations , separate the particular equation into its corresponding parts : one part with the plus sign and the other with the minus sign.
$
{x_1} = \dfrac{{26 + 28.07}}{2} \\
{x_2} = \dfrac{{26 - 28.07}}{2} \\
$
Simplify and then isolate the variable to find its corresponding solutions!
$
{x_1} = 27.03 \approx 27 \\
{x_2} = - 1.03 \\
$
Since $x$ cannot be negative, therefore rejecting the negative value and accepting the other value that is $27$ .
Now, working individually to paint the house person takes $27 + 2 = 29$ hrs.
Note: For finding roots of the original equation, we have to use quadratic formula i.e.,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
And have to identify $a,b,c$ from the original equation .
We have to reject the negative value. since time cannot be negative.
Complete step-by-step solution:
It is given that ,
Two people can paint a house together in $14$ hours.
It will take $x$ hrs long when one person is working individually to paint the house .
And one of the people takes $2$ hours more than it takes the other person to paint the house when they work individually.
According to the given statement . we can write ,
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{{x + 2}}$
According to the question ,
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{{x + 2}} = \dfrac{1}{{14}}$
$
\Rightarrow \dfrac{{2x + 2}}{{{x^2} + 2x}} = \dfrac{1}{{14}} \\
\Rightarrow 28x + 28 = {x^2} + 2x \\
\Rightarrow {x^2} - 26x - 28 = 0 \\
$
For finding roots of the original equation, we have to use quadratic formula i.e.,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now identify $a,b,c$ from the original equation given below,
$ \Rightarrow {x^2} - 26x - 28 = 0$
Now compare the coefficient ,
$
a = 1, \\
b = - 26, \\
c = - 28. \\
$
Put these values into the formula of finding the roots of quadratic equations,
$
\Rightarrow \dfrac{{ - 26 \pm \sqrt {{{(26)}^2} - 4 \times 1 \times ( - 28)} }}{{2 \times 1}} \\
\Rightarrow \dfrac{{26 \pm \sqrt {788} }}{2} \\
\Rightarrow \dfrac{{26 \pm 28.07}}{2} \\
$
After simplifying and by evaluating exponents and square root of the above equation we get the following simplified expression,
$x = \dfrac{{26 \pm 28.07}}{2}$
To find the roots of the equations , separate the particular equation into its corresponding parts : one part with the plus sign and the other with the minus sign.
$
{x_1} = \dfrac{{26 + 28.07}}{2} \\
{x_2} = \dfrac{{26 - 28.07}}{2} \\
$
Simplify and then isolate the variable to find its corresponding solutions!
$
{x_1} = 27.03 \approx 27 \\
{x_2} = - 1.03 \\
$
Since $x$ cannot be negative, therefore rejecting the negative value and accepting the other value that is $27$ .
Now, working individually to paint the house person takes $27 + 2 = 29$ hrs.
Note: For finding roots of the original equation, we have to use quadratic formula i.e.,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
And have to identify $a,b,c$ from the original equation .
We have to reject the negative value. since time cannot be negative.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

