
Two objects of masses 100g and 200g are moving along the same line and direction with velocities $2m{s^{ - 1}}$ and $1m{s^{ - 1}}$ respectively. They collide and after the collision, the second object moves with a velocity of $1.67m{s^{ - 1}}$. Determine the velocity of the first object:
A) $0.66m{s^{ - 1}}$
B) $0.55m{s^{ - 1}}$
C) $1.66m{s^{ - 1}}$
D) $0.33m{s^{ - 1}}$
Answer
575.4k+ views
Hint: Collision is short-duration interaction between two bodies or more than two bodies simultaneously causing a change in motion of bodies. Collision is of three types:
(i) Perfectly elastic collision.
(ii) Inelastic collision.
(iii) Perfectly inelastic collision.
To solve this type of question we use the law of conservation of momentum.
Complete step by step answer:
Given, ${m_1} = 100g,{m_2} = 200g,{u_1} = 2m/s,{u_2} = 1m/s,{v_2} = 1.67m/s$
We have to find the velocity of the first object $v_1$.
Flowing is the diagram showing the situation.
Now let us use the concept of conservation of linear momentum which states that the total initial momentum is equal to the total final momentum.
Initial momentum = Final momentum
Let us write the linear momentum of the system before the collision.
${P_{initial}} = {m_1}{u_1} + {m_2}{u_2}$
Let us now substitute the values.
$\Rightarrow {P_{initial}} = 0.1 \times 2 + 0.2 \times 1$
Let us simplify it.
$\Rightarrow {P_{initial}} = 0.4kgm/s$ ………...(1)
Let us write the linear momentum of the system after the collision.
$ {P_{final}} = {m_1}{v_1} + {m_2}{v_2}$
Let us now substitute the values.
$\Rightarrow {P_{final}} = 0.1{v_1} + 0.2 \times 1.67$
Let us simplify it.
$\Rightarrow {P_{final}} = 0.1{v_1} + 0.334$ …………..(2)
Now using linear momentum conservation, let us equate equation (1) and (2).
$\Rightarrow 0.4 = 0.1{v_1} + 0.334$
Let us simplify it.
$\Rightarrow 0.4 - 0.334 = 0.2{v_1} \Rightarrow {v_1} = \dfrac{{0.066}}{{0.2}}$
$\Rightarrow {v_1} = 0.33m/s$
$\therefore $ The velocity of the first object is 0.33m/sec. Hence, option (D) correct.
Note:
There are two types of collisions between two bodies as given below:
1) Head-on collisions (also known as one-dimensional collisions) – In this type of collision, the velocity of each body just before impact is along the line of impact after collision also.
2) Non-head-on collisions, (also known as two-dimensional collisions) – In this type of collision, the velocity of each body just before impact is not along the line of impact after the collision.
(i) Perfectly elastic collision.
(ii) Inelastic collision.
(iii) Perfectly inelastic collision.
To solve this type of question we use the law of conservation of momentum.
Complete step by step answer:
Given, ${m_1} = 100g,{m_2} = 200g,{u_1} = 2m/s,{u_2} = 1m/s,{v_2} = 1.67m/s$
We have to find the velocity of the first object $v_1$.
Flowing is the diagram showing the situation.
Now let us use the concept of conservation of linear momentum which states that the total initial momentum is equal to the total final momentum.
Initial momentum = Final momentum
Let us write the linear momentum of the system before the collision.
${P_{initial}} = {m_1}{u_1} + {m_2}{u_2}$
Let us now substitute the values.
$\Rightarrow {P_{initial}} = 0.1 \times 2 + 0.2 \times 1$
Let us simplify it.
$\Rightarrow {P_{initial}} = 0.4kgm/s$ ………...(1)
Let us write the linear momentum of the system after the collision.
$ {P_{final}} = {m_1}{v_1} + {m_2}{v_2}$
Let us now substitute the values.
$\Rightarrow {P_{final}} = 0.1{v_1} + 0.2 \times 1.67$
Let us simplify it.
$\Rightarrow {P_{final}} = 0.1{v_1} + 0.334$ …………..(2)
Now using linear momentum conservation, let us equate equation (1) and (2).
$\Rightarrow 0.4 = 0.1{v_1} + 0.334$
Let us simplify it.
$\Rightarrow 0.4 - 0.334 = 0.2{v_1} \Rightarrow {v_1} = \dfrac{{0.066}}{{0.2}}$
$\Rightarrow {v_1} = 0.33m/s$
$\therefore $ The velocity of the first object is 0.33m/sec. Hence, option (D) correct.
Note:
There are two types of collisions between two bodies as given below:
1) Head-on collisions (also known as one-dimensional collisions) – In this type of collision, the velocity of each body just before impact is along the line of impact after collision also.
2) Non-head-on collisions, (also known as two-dimensional collisions) – In this type of collision, the velocity of each body just before impact is not along the line of impact after the collision.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

