
Two objects A and B are moving along the directions as shown in the figure. Find the magnitude and direction of the relative velocity of B w.r.t. A.
Answer
549.3k+ views
Hint Relative velocity of B w.r.t. A is given by:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} $
Magnitude of this relative velocity is $ \left| \overrightarrow{{{v}_{BA}}} \right| $
Direction of this relative velocity is given by the angle $ \alpha $ which is calculated by:
$\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}} $
Where $ {{v}_{B{{A}_{y}}}} $ and $ {{v}_{B{{A}_{x}}}} $ are the y and x components of $ \overrightarrow{{{v}_{BA}}} $ .
Complete step by step solution
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\
&\Rightarrow \text{Here taking the components of velocity of B;} \\
&\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\
&\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\
\end{align} $
Relative velocity of B w.r.t. A is
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\
&\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\
&\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\
\end{align} $
$ \begin{align}
& Now \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
& \text{For direction;} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Note
Alternate method:
Velocity of B w.r.t. A:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right) $
From the figure;
$ \begin{align}
&\Rightarrow NS=MP=20\sin 30{}^\circ \\
&\Rightarrow NS=10 \\
& and \\
&\Rightarrow ON=OM-NM \\
&\Rightarrow ON=20\cos 30{}^\circ -10 \\
&\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
\end{align} $
$ \begin{align}
& \text{For direction;} \\
&\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} $
Magnitude of this relative velocity is $ \left| \overrightarrow{{{v}_{BA}}} \right| $
Direction of this relative velocity is given by the angle $ \alpha $ which is calculated by:
$\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}} $
Where $ {{v}_{B{{A}_{y}}}} $ and $ {{v}_{B{{A}_{x}}}} $ are the y and x components of $ \overrightarrow{{{v}_{BA}}} $ .
Complete step by step solution
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\
&\Rightarrow \text{Here taking the components of velocity of B;} \\
&\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\
&\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\
\end{align} $
Relative velocity of B w.r.t. A is
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\
&\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\
&\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\
\end{align} $
$ \begin{align}
& Now \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
& \text{For direction;} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Note
Alternate method:
Velocity of B w.r.t. A:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right) $
From the figure;
$ \begin{align}
&\Rightarrow NS=MP=20\sin 30{}^\circ \\
&\Rightarrow NS=10 \\
& and \\
&\Rightarrow ON=OM-NM \\
&\Rightarrow ON=20\cos 30{}^\circ -10 \\
&\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
\end{align} $
$ \begin{align}
& \text{For direction;} \\
&\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

