
Two first order reactions have their half lives in the ratio $ 3:2 $ .Calculate the ratio of $ {t_1}:{t_2} $ . The time $ {t_1} $ and $ {t_2} $ are the time periods for $ 25\% $ and $ 75\% $ completion for the first and second reaction.
$ \left( {a.} \right){\text{ 0}}{\text{.311 : 1}} $
$ \left( {b.} \right){\text{ 0}}{\text{.420 : 1}} $
$ \left( {c.} \right){\text{ 0}}{\text{.273 : 1}} $
$ \left( {d.} \right){\text{ 0}}{\text{.119 : 1}} $
Answer
495k+ views
Hint : We will find the time taken for the reactions to complete $ 25\% $ and $ 75\% $ of its initial value. With the help of half-lives we can find out the reaction constant for the reaction respectively. We will find $ {t_1} $ and $ {t_2} $ separately for both the reactions. Then we will find the ratio of $ {t_1} $ and $ {t_2} $ .
$ \left( 1 \right). $ $ t{\text{ = }}\dfrac{{2.303}}{k}{\text{log}}\left[ {\dfrac{A}{{A - {A_ \circ }}}} \right] $
Where,
$ t{\text{ = }} $ Time period for completion of reaction
$ {\text{k = }} $ Rate constant of reaction
$ {\text{A = }} $ Initial concentration of reactant
$ {\text{A - }}{{\text{A}}_ \circ }{\text{ = concentration at time , t}} $
$ \left( 2 \right).{\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{k} $ .
Complete Step By Step Answer:
The time taken by the first order reaction to complete is given by:
$ t{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{A}{{A - {A_ \circ }}}} \right] $
Here at time $ {\text{ t}} $ the reaction is completed which means the reactants are completely converted into the products. For first reaction which takes times $ {t_1} $ to complete $ 25\% $ of its initial value we can write,
$ {t_1}{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{100 - 25}}} \right] $
Here we consider the initial amount of reactant is $ 100\% $ , then according to the question at $ 25\% $ the left amount will be $ 100{\text{ - 25}} $ . Therefore it can be written as,
$ {t_1}{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{75}}} \right] $ _______________ $ \left( 1 \right) $
Similarly for second reaction which takes time $ {t_2} $ for its $ 75\% $ completion, we can write,
$ {t_1}{\text{ = }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{100 - 75}}} \right] $
$ {t_2}{\text{ = }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{25}}} \right] $ _______________ $ \left( 2 \right) $
Now we have to find the ratio of $ {t_1} $ and $ {t_2} $ , therefore divide the equations $ \left( 1 \right) $ and $ \left( 2 \right) $ .
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{\text{ }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{75}}} \right]}}{{{\text{ }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{25}}} \right]}} $
On solving we get the result as:
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{{\text{k}}_2}{\text{ }} \times {\text{ 0}}{\text{.123}}}}{{{\text{ }}{{\text{k}}_1}{\text{ }} \times {\text{ 0}}{\text{.602}}}} $
For finding the ratio of $ {k_2}{\text{ and }}{{\text{k}}_1} $ we use the concept of half-lives for first order reaction. For first order reaction the half-life of a substance is given by,
$ {\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{k} $
Therefore for first reaction it is given by,
$ {\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{{{k_1}}} $ ___________ $ \left( 3 \right) $
Similarly for second reaction it can be written as,
$ {\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{{{k_2}}} $ ____________ $ \left( 4 \right) $
Also the ratio of half-life time is given as $ 3:2 $ . On dividing equation $ \left( 3 \right) $ and $ \left( 4 \right) $ we can write as,
$ \dfrac{3}{2}{\text{ = }}\dfrac{{{\text{ }}\dfrac{{0.693}}{{{k_1}}}}}{{{\text{ }}\dfrac{{0.693}}{{{k_2}}}}} $
$ \dfrac{3}{2}{\text{ = }}\dfrac{{{\text{ }}{{\text{k}}_2}}}{{{\text{ }}{{\text{k}}_1}}} $
Now using this relation we can find the ratio of time also.
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{{\text{k}}_2}{\text{ }} \times {\text{ 0}}{\text{.123}}}}{{{\text{ }}{{\text{k}}_1}{\text{ }} \times {\text{ 0}}{\text{.602}}}} $
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{\text{3 }} \times {\text{ 0}}{\text{.123}}}}{{2{\text{ }} \times {\text{ 0}}{\text{.602}}}}{\text{ }} $
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{0.308}}{1}{\text{ }} $
Hence the ratio will be $ 0.308{\text{ }}:{\text{ }}1 $ . The nearest answer in the given option is $ \left( {a.} \right){\text{ 0}}{\text{.311 : 1}} $
Note :
The half-life is the time when the concentration of the reactants becomes half of initial value. The value of half time is different for different orders of reaction. The value of rate constant is easily determined by using the given formula for only first order reaction.
$ \left( 1 \right). $ $ t{\text{ = }}\dfrac{{2.303}}{k}{\text{log}}\left[ {\dfrac{A}{{A - {A_ \circ }}}} \right] $
Where,
$ t{\text{ = }} $ Time period for completion of reaction
$ {\text{k = }} $ Rate constant of reaction
$ {\text{A = }} $ Initial concentration of reactant
$ {\text{A - }}{{\text{A}}_ \circ }{\text{ = concentration at time , t}} $
$ \left( 2 \right).{\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{k} $ .
Complete Step By Step Answer:
The time taken by the first order reaction to complete is given by:
$ t{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{A}{{A - {A_ \circ }}}} \right] $
Here at time $ {\text{ t}} $ the reaction is completed which means the reactants are completely converted into the products. For first reaction which takes times $ {t_1} $ to complete $ 25\% $ of its initial value we can write,
$ {t_1}{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{100 - 25}}} \right] $
Here we consider the initial amount of reactant is $ 100\% $ , then according to the question at $ 25\% $ the left amount will be $ 100{\text{ - 25}} $ . Therefore it can be written as,
$ {t_1}{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{75}}} \right] $ _______________ $ \left( 1 \right) $
Similarly for second reaction which takes time $ {t_2} $ for its $ 75\% $ completion, we can write,
$ {t_1}{\text{ = }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{100 - 75}}} \right] $
$ {t_2}{\text{ = }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{25}}} \right] $ _______________ $ \left( 2 \right) $
Now we have to find the ratio of $ {t_1} $ and $ {t_2} $ , therefore divide the equations $ \left( 1 \right) $ and $ \left( 2 \right) $ .
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{\text{ }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{75}}} \right]}}{{{\text{ }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{25}}} \right]}} $
On solving we get the result as:
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{{\text{k}}_2}{\text{ }} \times {\text{ 0}}{\text{.123}}}}{{{\text{ }}{{\text{k}}_1}{\text{ }} \times {\text{ 0}}{\text{.602}}}} $
For finding the ratio of $ {k_2}{\text{ and }}{{\text{k}}_1} $ we use the concept of half-lives for first order reaction. For first order reaction the half-life of a substance is given by,
$ {\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{k} $
Therefore for first reaction it is given by,
$ {\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{{{k_1}}} $ ___________ $ \left( 3 \right) $
Similarly for second reaction it can be written as,
$ {\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{{{k_2}}} $ ____________ $ \left( 4 \right) $
Also the ratio of half-life time is given as $ 3:2 $ . On dividing equation $ \left( 3 \right) $ and $ \left( 4 \right) $ we can write as,
$ \dfrac{3}{2}{\text{ = }}\dfrac{{{\text{ }}\dfrac{{0.693}}{{{k_1}}}}}{{{\text{ }}\dfrac{{0.693}}{{{k_2}}}}} $
$ \dfrac{3}{2}{\text{ = }}\dfrac{{{\text{ }}{{\text{k}}_2}}}{{{\text{ }}{{\text{k}}_1}}} $
Now using this relation we can find the ratio of time also.
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{{\text{k}}_2}{\text{ }} \times {\text{ 0}}{\text{.123}}}}{{{\text{ }}{{\text{k}}_1}{\text{ }} \times {\text{ 0}}{\text{.602}}}} $
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{\text{3 }} \times {\text{ 0}}{\text{.123}}}}{{2{\text{ }} \times {\text{ 0}}{\text{.602}}}}{\text{ }} $
$ \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{0.308}}{1}{\text{ }} $
Hence the ratio will be $ 0.308{\text{ }}:{\text{ }}1 $ . The nearest answer in the given option is $ \left( {a.} \right){\text{ 0}}{\text{.311 : 1}} $
Note :
The half-life is the time when the concentration of the reactants becomes half of initial value. The value of half time is different for different orders of reaction. The value of rate constant is easily determined by using the given formula for only first order reaction.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

