Two different masses are dropped from same heights, when just these strike the ground, the following is same
(A) Kinetic Energy
(B) Potential Energy
(C) Linear Momentum
(D) Acceleration
Answer
Verified
452.1k+ views
Hint : Understand the factors that affect the gravitational force and time. We know that height is one of the factors that affect the time to land while dropping. Use this logic and deduce the answer.
Complete step by step answer
Acceleration due to gravity is content all around the earth. So if a ball is dropped from the second floor of the building and a pebble is dropped from the same floor of the building, let’s find out what remains constant.
Now if the masses are different, rather the height is the same let’s find what remains constant. Now , the kinetic energy of the object is given as , $ \dfrac{1}{2}m{v^2} $ . Here we can see that the kinetic energy depends upon the mass of the object and hence will differ due to change in mass of objects. Thus kinetic energy won’t remain the same for both the objects.
Now, let’s calculate potential energy. The potential energy of an object, when dropped for height h, is given as $ PE = mgh $ . Now, from the equation, we can see that the potential energy of the objects depends upon the mass of the object and the height at which it is dropped. Since the masses of the object are different, the potential energy of the objects will also be different from each other.
Linear momentum of the object is given using the formula, $ P = mv $ , where m is the mass of the object and v is the velocity of the object. Here also, the momentum depends upon the mass of the object, which makes it different for both the objects.
Out of all, only the gravitational acceleration remains constant, since at any point of earth, when 2 objects are dropped from any height, its downward acceleration will be earth’s gravitational force G. Thus the acceleration caused due to this is constant throughout. Hence, acceleration remains the same for both objects.
Hence, Option (D) is the right answer.
Note
A similar experiment was performed by astrophysicist Galileo to understand the basics of gravity. He found out that at a given location and in absence of air resistance, the objects fall under uniform acceleration.
Complete step by step answer
Acceleration due to gravity is content all around the earth. So if a ball is dropped from the second floor of the building and a pebble is dropped from the same floor of the building, let’s find out what remains constant.
Now if the masses are different, rather the height is the same let’s find what remains constant. Now , the kinetic energy of the object is given as , $ \dfrac{1}{2}m{v^2} $ . Here we can see that the kinetic energy depends upon the mass of the object and hence will differ due to change in mass of objects. Thus kinetic energy won’t remain the same for both the objects.
Now, let’s calculate potential energy. The potential energy of an object, when dropped for height h, is given as $ PE = mgh $ . Now, from the equation, we can see that the potential energy of the objects depends upon the mass of the object and the height at which it is dropped. Since the masses of the object are different, the potential energy of the objects will also be different from each other.
Linear momentum of the object is given using the formula, $ P = mv $ , where m is the mass of the object and v is the velocity of the object. Here also, the momentum depends upon the mass of the object, which makes it different for both the objects.
Out of all, only the gravitational acceleration remains constant, since at any point of earth, when 2 objects are dropped from any height, its downward acceleration will be earth’s gravitational force G. Thus the acceleration caused due to this is constant throughout. Hence, acceleration remains the same for both objects.
Hence, Option (D) is the right answer.
Note
A similar experiment was performed by astrophysicist Galileo to understand the basics of gravity. He found out that at a given location and in absence of air resistance, the objects fall under uniform acceleration.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE