Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Two dice are thrown simultaneously. Find the probability of getting:
(a) The sum as a prime number.
(b) A doublet of even numbers.
(c) A multiple of 2 on one dice and multiple of 3 on the other dice.
(d) A multiple of 3 as the sum.

Answer
VerifiedVerified
452.8k+ views
4 likes
like imagedislike image
Hint: Calculate the number of possible outcomes for throwing two dice. Calculate the number of favourable outcomes for each of the cases. Use the fact that the probability of any event is the ratio of the number of favourable outcomes and the number of possible outcomes to calculate the probability of each of the events.

Complete step-by-step solution -
We have to calculate the probability of each of the events when two dice are thrown.
We know that the total number of possible outcomes when two dice are thrown is =6×6=36.
We know that the probability of any event is the ratio of the number of favourable outcomes and the number of possible outcomes.
We will now calculate the probability of events in each case.
(a) We have to calculate the probability that the sum of digits is a prime number.
We will draw a table showing the sum of digits on rolling both the dice.
+123456
1234567
2345678
3456789
45678910
567891011
6789101112


We observe that the possible values of prime numbers when two digits on the dice are added are 2, 3, 5, 7, and 11.
We observe that 2 occurs only once, 3 occurs 2 times, 5 occurs 4 times, 7 occurs 6 times and 11 occurs 2 times.
The number of favourable outcomes is the sum of occurrences of all the favourable outcomes. So, the number of favourable outcomes =1+2+4+6+2=15.
We know that the number of possible outcomes is 36.
Thus, the probability of getting the sum of two numbers as prime numbers is =1536=512.
(b) We will now calculate the probability of occurrence of a doublet of an even number.
We know that the favourable outcomes are (2, 2), (4, 4), and (6, 6).
So, the number of favourable outcomes is 3.
We know that the number of possible outcomes is 36.
Thus, the probability of getting a doublet of an even number is =336=112.
(c) We will calculate the probability of getting a multiple of 2 on one dice and multiple of 3 on the other dice.
Possible multiples of 2 on dice are 2, 4, and 6.
Possible multiples of 3 on dice are 3 and 6.
The possible outcomes for multiples of 2 on one dice and multiple of 3 on other dice are (2, 3), (2, 6), (4, 3), (4, 6), (6, 3), (6, 6), (3, 2), (6, 2), (3, 4), (6, 4), and (3, 6).
So, the number of favourable outcomes is 11.
We know that the number of possible outcomes is 36.
Thus, the probability of getting a multiple of 2 on one dice and multiple of 3 on the other dice is =1136.
(d) We will calculate the probability of getting a multiple of 3 as a sum of digits on both the dice.
We will draw the table showing possible values of the sum of digits on both the dice.
+123456
1234567
2345678
3456789
45678910
567891011
6789101112


The possible values of multiples of 3 as a sum of digits on dice are 3, 6, 9, and 12.
We observe that 3 occurs 2 times, 6 occurs 5 times, 9 occurs 4 times and 12 occurs once.
The number of favourable outcomes is the sum of occurrences of all the favourable outcomes. So, the number of favourable outcomes =2+5+4+1=12.
We know that the number of possible outcomes is 36.
Thus, the probability of getting multiples of 3 as a sum of digits on dice is =1236=13.
Note: We must calculate the number of favourable and possible outcomes in each case to calculate the probability of each of the given events. We should also be careful that we don’t count the same event repeatedly or we miss some event.



Latest Vedantu courses for you
Grade 6 | CBSE | SCHOOL | English
Vedantu 6 Pro Course (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
EnglishEnglish
MathsMaths
ScienceScience
₹49,800 (9% Off)
₹45,300 per year
Select and buy
Try out challenging quizzes on this topic
made by experts!
Take me there!