
Two dice are thrown. Describe the sample space of this experiment.
Answer
557.7k+ views
Hint:
1) If two dice are thrown, there are 6 × 6 = 36 different outcomes possible.
2) The sample space of a random experiment is the set of all possible outcomes.
3) The sample space is represented using S.
4) A subset of the sample space of an experiment is called an event represented by E.
Complete step by step solution:
When two dice are thrown, we may get an outcome as (1, 1), (2, 5), (1, 6), (3, 1) etc.
Since, there are six different possible outcomes for a dice, the set (S) of all the outcomes can be listed as follows:
\[\left( {1,{\text{ }}1} \right),{\text{ }}\left( {1,{\text{ }}2} \right),{\text{ }}\left( {1,{\text{ }}3} \right),{\text{ }}\left( {1,{\text{ }}4} \right),{\text{ }}\left( {1,{\text{ }}5} \right),{\text{ }}\left( {1,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {2,{\text{ }}1} \right),{\text{ }}\left( {2,{\text{ }}2} \right),{\text{ }}\left( {2,{\text{ }}3} \right),{\text{ }}\left( {2,{\text{ }}4} \right),{\text{ }}\left( {2,{\text{ }}5} \right),{\text{ }}\left( {2,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {3,{\text{ }}1} \right),{\text{ }}\left( {3,{\text{ }}2} \right),{\text{ }}\left( {3,{\text{ }}3} \right),{\text{ }}\left( {3,{\text{ }}4} \right),{\text{ }}\left( {3,{\text{ }}5} \right),{\text{ }}\left( {3,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {4,{\text{ }}1} \right),{\text{ }}\left( {4,{\text{ }}2} \right),{\text{ }}\left( {4,{\text{ }}3} \right),{\text{ }}\left( {4,{\text{ }}4} \right),{\text{ }}\left( {4,{\text{ }}5} \right),{\text{ }}\left( {4,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {5,{\text{ }}1} \right),{\text{ }}\left( {5,{\text{ }}2} \right),{\text{ }}\left( {5,{\text{ }}3} \right),{\text{ }}\left( {5,{\text{ }}4} \right),{\text{ }}\left( {5,{\text{ }}5} \right),{\text{ }}\left( {5,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {6,{\text{ }}1} \right),{\text{ }}\left( {6,{\text{ }}2} \right),{\text{ }}\left( {6,{\text{ }}3} \right),{\text{ }}\left( {6,{\text{ }}4} \right),{\text{ }}\left( {6,{\text{ }}5} \right),{\text{ }}\left( {6,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
Total number of elements (possibilities) of set S are therefore,\[n\left( S \right) = 6 \times 6 = 36\]; i.e. six possibilities of second dice for each of the six possibilities of the first dice.
Note:
1) A sample space is usually denoted using set notation, and the possible ordered outcomes are listed as elements in the set.
2) The probability of an outcome E in a sample space S is a number P between 1 and 0 that measures the likelihood that E will occur on a single trial.
1) If two dice are thrown, there are 6 × 6 = 36 different outcomes possible.
2) The sample space of a random experiment is the set of all possible outcomes.
3) The sample space is represented using S.
4) A subset of the sample space of an experiment is called an event represented by E.
Complete step by step solution:
When two dice are thrown, we may get an outcome as (1, 1), (2, 5), (1, 6), (3, 1) etc.
Since, there are six different possible outcomes for a dice, the set (S) of all the outcomes can be listed as follows:
\[\left( {1,{\text{ }}1} \right),{\text{ }}\left( {1,{\text{ }}2} \right),{\text{ }}\left( {1,{\text{ }}3} \right),{\text{ }}\left( {1,{\text{ }}4} \right),{\text{ }}\left( {1,{\text{ }}5} \right),{\text{ }}\left( {1,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {2,{\text{ }}1} \right),{\text{ }}\left( {2,{\text{ }}2} \right),{\text{ }}\left( {2,{\text{ }}3} \right),{\text{ }}\left( {2,{\text{ }}4} \right),{\text{ }}\left( {2,{\text{ }}5} \right),{\text{ }}\left( {2,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {3,{\text{ }}1} \right),{\text{ }}\left( {3,{\text{ }}2} \right),{\text{ }}\left( {3,{\text{ }}3} \right),{\text{ }}\left( {3,{\text{ }}4} \right),{\text{ }}\left( {3,{\text{ }}5} \right),{\text{ }}\left( {3,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {4,{\text{ }}1} \right),{\text{ }}\left( {4,{\text{ }}2} \right),{\text{ }}\left( {4,{\text{ }}3} \right),{\text{ }}\left( {4,{\text{ }}4} \right),{\text{ }}\left( {4,{\text{ }}5} \right),{\text{ }}\left( {4,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {5,{\text{ }}1} \right),{\text{ }}\left( {5,{\text{ }}2} \right),{\text{ }}\left( {5,{\text{ }}3} \right),{\text{ }}\left( {5,{\text{ }}4} \right),{\text{ }}\left( {5,{\text{ }}5} \right),{\text{ }}\left( {5,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {6,{\text{ }}1} \right),{\text{ }}\left( {6,{\text{ }}2} \right),{\text{ }}\left( {6,{\text{ }}3} \right),{\text{ }}\left( {6,{\text{ }}4} \right),{\text{ }}\left( {6,{\text{ }}5} \right),{\text{ }}\left( {6,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
Total number of elements (possibilities) of set S are therefore,\[n\left( S \right) = 6 \times 6 = 36\]; i.e. six possibilities of second dice for each of the six possibilities of the first dice.
Note:
1) A sample space is usually denoted using set notation, and the possible ordered outcomes are listed as elements in the set.
2) The probability of an outcome E in a sample space S is a number P between 1 and 0 that measures the likelihood that E will occur on a single trial.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

