
Two coherent monochromatic light beams of intensities I and 4I are superimposed. The maximum and minimum possible intensities in the resulting beam are
A. 5I and I
B. 5I and 3I
C. 9I and I
D. 9I and 3I
Answer
514.8k+ views
3 likes
Hint: Intensity of a light beam depends on the amplitude of the light. When two coherent light beams merge, it can have different types of superpositions. The maximum intensity occurs when they are in-phase and minimum superposition occurs when they are completely out of phase.
Complete step-by-step answer:
Superposition of two light beams occurs when two light beams converge at a position. The resultant light beam has an amplitude which depends on the amplitude of the constituent waves and the phase of those waves.
The intensity of light waves depends on the amplitude of the wave in this manner.
When two light waves converge, we cannot add the intensity of the light waves.
We need to find the amplitude of the waves and then calculate the resultant amplitude of the new superimposed wave.
Let’s assume the amplitude of the wave that has intensity I, is A.
As intensity depends on the square of the amplitude, we can write
Hence, for the other light wave amplitude can be given by,
If the two light waves converge in-phase, the amplitudes can be added.
Hence, the resultant amplitude will be = (A+2A) = 3A.
So, the intensity will be,
When the two light waves converge out-of-phase, the amplitude will be,
(2A-A) =A
Hence, the intensity of the resultant light will be,
So, the maximum intensity will be 9I and the minimum intensity will be I.
The correct answer is (C).
Note: There is another formula to calculate the maximum and minimum intensity of the light wave.
The maximum intensity can be given by,
The minimum intensity can be given by,
The intensity due to a superposition can be given by,
Where.
is the intensity of one light beam
is the intensity of the second light beam
phase difference between the two light beams
Complete step-by-step answer:
Superposition of two light beams occurs when two light beams converge at a position. The resultant light beam has an amplitude which depends on the amplitude of the constituent waves and the phase of those waves.
The intensity of light waves depends on the amplitude of the wave in this manner.
When two light waves converge, we cannot add the intensity of the light waves.
We need to find the amplitude of the waves and then calculate the resultant amplitude of the new superimposed wave.
Let’s assume the amplitude of the wave that has intensity I, is A.
As intensity depends on the square of the amplitude, we can write
Hence, for the other light wave amplitude can be given by,
If the two light waves converge in-phase, the amplitudes can be added.
Hence, the resultant amplitude will be = (A+2A) = 3A.
So, the intensity will be,
When the two light waves converge out-of-phase, the amplitude will be,
(2A-A) =A
Hence, the intensity of the resultant light will be,
So, the maximum intensity will be 9I and the minimum intensity will be I.
The correct answer is (C).
Note: There is another formula to calculate the maximum and minimum intensity of the light wave.
The maximum intensity can be given by,
The minimum intensity can be given by,
The intensity due to a superposition can be given by,
Where.
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
