Answer
Verified
493.2k+ views
Hint: To solve the question, we have to represent the given data in a diagram which hints the relation between the radius of the circles. Apply relevant formulae to solve the equation and find out the values.
Complete step-by-step answer:
Let the radius of two circles be \[x,y\] where \[x>y\].
The distance between the centre of the circles given = 6 cm.
From the diagram we observe that the distance between the centre of the circles = x - y
\[\Rightarrow x-y=6\] ……. (1)
We know that the formula of area of the circle \[=\pi {{r}^{2}}\]
Where r is the radius of the circle.
Thus, the sum of the areas of the circles with radius x, y \[=\pi {{x}^{2}}+\pi {{y}^{2}}\].
The sum of the areas of the circles given \[=116\pi cm{}^\text{2}\].
\[\Rightarrow \pi {{x}^{2}}+\pi {{y}^{2}}=116\pi cm{}^\text{2}\]
\[\pi \left( {{x}^{2}}+{{y}^{2}} \right)=116\pi \]
\[{{x}^{2}}+{{y}^{2}}=116\]
By substituting the equation (1) in the above equation, we get
\[{{\left( 6+y \right)}^{2}}+{{y}^{2}}=116\] ……. (2)
We know that the formula for \[{{\left( a+b \right)}^{2}}\] is given by \[{{a}^{2}}+{{b}^{2}}+2ab\]
On comparing the expression \[{{\left( a+b \right)}^{2}}\]with \[{{\left( 6+y \right)}^{2}}\], we get a = 6 and b = y
By substituting the above formula in equation (2), we get that
\[{{6}^{2}}+2(6)y+{{y}^{2}}+{{y}^{2}}=116\]
\[36+12y+{{y}^{2}}+{{y}^{2}}=116\]
\[2{{y}^{2}}+12y-116+36=0\]
\[2{{y}^{2}}+12y-80=0\]
\[2\left( {{y}^{2}}+6y-40 \right)=0\]
\[{{y}^{2}}+6y-40=0\]
\[{{y}^{2}}+10y-4y-40=0\]
\[\left( y+10 \right)\left( y-4 \right)=0\]
Thus, the possible values of y = 4 cm, -10 cm.
Radius is a measurement which cannot be negative.
\[\Rightarrow \]y = 4cm
The value of x = 6 + y = 6 + 4 = 10cm.
Thus, the radius of the circles are 4 cm,10 cm.
Hence the option (b) is the correct answer.
Note: The possibility of mistake is the calculations while solving the quadratic equations. The alternative method to solve the question is by option elimination method, from the given information we understand that the difference between the radius of the circles is equal to 6 cm. Thus, we can arrive at the solution while eliminating the other three options.
Complete step-by-step answer:
Let the radius of two circles be \[x,y\] where \[x>y\].
The distance between the centre of the circles given = 6 cm.
From the diagram we observe that the distance between the centre of the circles = x - y
\[\Rightarrow x-y=6\] ……. (1)
We know that the formula of area of the circle \[=\pi {{r}^{2}}\]
Where r is the radius of the circle.
Thus, the sum of the areas of the circles with radius x, y \[=\pi {{x}^{2}}+\pi {{y}^{2}}\].
The sum of the areas of the circles given \[=116\pi cm{}^\text{2}\].
\[\Rightarrow \pi {{x}^{2}}+\pi {{y}^{2}}=116\pi cm{}^\text{2}\]
\[\pi \left( {{x}^{2}}+{{y}^{2}} \right)=116\pi \]
\[{{x}^{2}}+{{y}^{2}}=116\]
By substituting the equation (1) in the above equation, we get
\[{{\left( 6+y \right)}^{2}}+{{y}^{2}}=116\] ……. (2)
We know that the formula for \[{{\left( a+b \right)}^{2}}\] is given by \[{{a}^{2}}+{{b}^{2}}+2ab\]
On comparing the expression \[{{\left( a+b \right)}^{2}}\]with \[{{\left( 6+y \right)}^{2}}\], we get a = 6 and b = y
By substituting the above formula in equation (2), we get that
\[{{6}^{2}}+2(6)y+{{y}^{2}}+{{y}^{2}}=116\]
\[36+12y+{{y}^{2}}+{{y}^{2}}=116\]
\[2{{y}^{2}}+12y-116+36=0\]
\[2{{y}^{2}}+12y-80=0\]
\[2\left( {{y}^{2}}+6y-40 \right)=0\]
\[{{y}^{2}}+6y-40=0\]
\[{{y}^{2}}+10y-4y-40=0\]
\[\left( y+10 \right)\left( y-4 \right)=0\]
Thus, the possible values of y = 4 cm, -10 cm.
Radius is a measurement which cannot be negative.
\[\Rightarrow \]y = 4cm
The value of x = 6 + y = 6 + 4 = 10cm.
Thus, the radius of the circles are 4 cm,10 cm.
Hence the option (b) is the correct answer.
Note: The possibility of mistake is the calculations while solving the quadratic equations. The alternative method to solve the question is by option elimination method, from the given information we understand that the difference between the radius of the circles is equal to 6 cm. Thus, we can arrive at the solution while eliminating the other three options.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it