
What trigonometric ratio of angles from ${{0}^{\circ }}\text{ to }{{90}^{\circ }}$ are not defined?
Answer
571.5k+ views
Hint: For solving this sum, we need to draw the trigonometric ratio table for angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\text{ and }{{90}^{\circ }}$. Then from the trigonometric table we can identify the ratios which are not defined. For drawing table, we need to memorize value of $\sin \theta $ only other can be calculated using following formula:
\[\begin{align}
& \left( i \right)\cos \theta =\sin \left( {{90}^{\circ }}-\theta \right) \\
& \left( ii \right)\tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \left( iii \right)\cot \theta =\dfrac{1}{\tan \theta } \\
& \left( iv \right)\text{cosec}\theta =\dfrac{1}{\sin \theta } \\
& \left( v \right)\sec \theta =\dfrac{1}{\cos \theta } \\
\end{align}\]
Complete step-by-step answer:
Here we need to draw the trigonometric ratio table for angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\text{ and }{{90}^{\circ }}$.
For the drawing table, let us first find values for the table. For $\sin \theta $ we just need to memorize the value. Values of $\sin \theta $ are:
$\sin {{0}^{\circ }}=0,\sin {{30}^{\circ }}=\dfrac{1}{2},\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\text{ and }\sin {{90}^{\circ }}=1$.
For finding values of $\cos \theta $ we will just use the formula $\cos \theta =\sin \left( {{90}^{\circ }}-\theta \right)$. So, the value of $\cos \theta =\sin \left( {{90}^{\circ }}-\theta \right)=\sin {{90}^{\circ }}=1$.
Similarly,
\[\begin{align}
& \Rightarrow \cos {{30}^{\circ }}=\sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right)=\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \cos {{45}^{\circ }}=\sin \left( {{90}^{\circ }}-{{45}^{\circ }} \right)=\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
& \Rightarrow \cos {{60}^{\circ }}=\sin \left( {{90}^{\circ }}-{{60}^{\circ }} \right)=\sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \cos {{90}^{\circ }}=\sin \left( {{90}^{\circ }}-{{90}^{\circ }} \right)=\sin {{0}^{\circ }}=0 \\
\end{align}\]
So value of $\cos \theta $ become as:
$\cos {{0}^{\circ }}=1,\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2},\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\cos {{60}^{\circ }}=\dfrac{1}{2},\cos {{90}^{\circ }}=0$.
Now let us find value of $\tan \theta $.
As we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ so we get value of
\[\begin{align}
& \Rightarrow \tan {{0}^{\circ }}=\dfrac{\sin {{0}^{\circ }}}{\cos {{0}^{\circ }}}=\dfrac{0}{1}=0 \\
& \Rightarrow \tan {{30}^{\circ }}=\dfrac{\sin {{30}^{\circ }}}{\cos {{30}^{\circ }}}=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\dfrac{1}{2}\times \dfrac{2}{\sqrt{3}}=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow \tan {{45}^{\circ }}=\dfrac{\sin {{45}^{\circ }}}{\cos {{45}^{\circ }}}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}}=1 \\
& \Rightarrow \tan {{60}^{\circ }}=\dfrac{\sin {{60}^{\circ }}}{\cos {{60}^{\circ }}}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}=\dfrac{\sqrt{3}}{2}\times \dfrac{2}{1}=\sqrt{3} \\
& \Rightarrow \tan {{90}^{\circ }}=\dfrac{\sin {{90}^{\circ }}}{\cos {{90}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
\end{align}\]
Hence the value of $\tan \theta $ are:
$\tan {{0}^{\circ }}=0,\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}},\tan {{45}^{\circ }}=1,\tan {{60}^{\circ }}=\sqrt{3},\tan {{90}^{\circ }}=\text{not defined}$
Now we need to find the values of $\cot \theta $. As we know $\cot \theta =\dfrac{1}{\tan \theta }$ so the value of $\cot \theta $ will just be reciprocal of $\tan \theta $. Hence, we can find value as:
\[\begin{align}
& \Rightarrow \cot {{0}^{\circ }}=\dfrac{1}{\tan {{0}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
& \Rightarrow \cot {{30}^{\circ }}=\dfrac{1}{\tan {{30}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{3}}}=\sqrt{3} \\
& \Rightarrow \cot {{45}^{\circ }}=\dfrac{1}{\tan {{45}^{\circ }}}=\dfrac{1}{1}=1 \\
& \Rightarrow \cot {{60}^{\circ }}=\dfrac{1}{\tan {{60}^{\circ }}}=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow \cot {{90}^{\circ }}=\dfrac{1}{\tan {{90}^{\circ }}}=\dfrac{1}{\dfrac{1}{0}}=\text{0} \\
\end{align}\]
Hence we have found values of $\cot \theta $ also.
Now for finding the value of $\text{cosec}\theta $ we just need to take reciprocal of values of $\sin \theta $ as $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ so we get:
\[\begin{align}
& \Rightarrow \text{cosec}{{0}^{\circ }}=\dfrac{1}{\sin {{0}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
& \Rightarrow \text{cosec}{{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}}=\dfrac{1}{\dfrac{1}{2}}=2 \\
& \Rightarrow \text{cosec}{{45}^{\circ }}=\dfrac{1}{\sin {{45}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{2}}}=\sqrt{2} \\
& \Rightarrow \text{cosec}{{60}^{\circ }}=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{1}{\dfrac{\sqrt{3}}{2}}=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \text{cosec}{{90}^{\circ }}=\dfrac{1}{\sin {{90}^{\circ }}}=\dfrac{1}{1}=\text{1} \\
\end{align}\]
Hence we have found values of $\text{cosec}\theta $ also.
Now, for finding values of $\sec \theta $ we just need to take reciprocal of $\cos \theta $ as $\sec \theta =\dfrac{1}{\cos \theta }$s so we get:
\[\begin{align}
& \Rightarrow \text{sec}{{0}^{\circ }}=\dfrac{1}{\cos {{0}^{\circ }}}=\dfrac{1}{1}=\text{1} \\
& \Rightarrow \text{sec}{{30}^{\circ }}=\dfrac{1}{\cos {{30}^{\circ }}}=\dfrac{1}{\dfrac{\sqrt{3}}{2}}=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \text{sec}{{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{2}}}=\sqrt{2} \\
& \Rightarrow \text{sec}{{60}^{\circ }}=\dfrac{1}{\cos {{60}^{\circ }}}=\dfrac{1}{\dfrac{1}{2}}=2 \\
& \Rightarrow \text{sec}{{90}^{\circ }}=\dfrac{1}{\cos {{90}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
\end{align}\]
Hence we have found values of $\sec \theta $ also.
Putting all these values in the form of table, we get trigonometric ratio table as:
From the table we can find values that are not defined which are:
$\tan {{90}^{\circ }},\cot {{0}^{\circ }},\text{cosec}{{0}^{\circ }}\text{ and }\sec {{90}^{\circ }}$.
Hence required trigonometric ratios are $\tan {{90}^{\circ }},\cot {{0}^{\circ }},\text{cosec}{{0}^{\circ }}\text{ and }\sec {{90}^{\circ }}$.
So, the correct answer is “Option A”.
Note: Students can memorize the values of $\sin \theta $ in following way:
Divide 0, 1, 2, 3, 4 by 4 and take under root. Then values of $\sin \theta $ will be:
Students should note that, ratios whose values are $\dfrac{1}{0},\infty $ are considered as not defined values. Take care while finding the values.
\[\begin{align}
& \left( i \right)\cos \theta =\sin \left( {{90}^{\circ }}-\theta \right) \\
& \left( ii \right)\tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \left( iii \right)\cot \theta =\dfrac{1}{\tan \theta } \\
& \left( iv \right)\text{cosec}\theta =\dfrac{1}{\sin \theta } \\
& \left( v \right)\sec \theta =\dfrac{1}{\cos \theta } \\
\end{align}\]
Complete step-by-step answer:
Here we need to draw the trigonometric ratio table for angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\text{ and }{{90}^{\circ }}$.
For the drawing table, let us first find values for the table. For $\sin \theta $ we just need to memorize the value. Values of $\sin \theta $ are:
$\sin {{0}^{\circ }}=0,\sin {{30}^{\circ }}=\dfrac{1}{2},\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\text{ and }\sin {{90}^{\circ }}=1$.
For finding values of $\cos \theta $ we will just use the formula $\cos \theta =\sin \left( {{90}^{\circ }}-\theta \right)$. So, the value of $\cos \theta =\sin \left( {{90}^{\circ }}-\theta \right)=\sin {{90}^{\circ }}=1$.
Similarly,
\[\begin{align}
& \Rightarrow \cos {{30}^{\circ }}=\sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right)=\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \cos {{45}^{\circ }}=\sin \left( {{90}^{\circ }}-{{45}^{\circ }} \right)=\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
& \Rightarrow \cos {{60}^{\circ }}=\sin \left( {{90}^{\circ }}-{{60}^{\circ }} \right)=\sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \cos {{90}^{\circ }}=\sin \left( {{90}^{\circ }}-{{90}^{\circ }} \right)=\sin {{0}^{\circ }}=0 \\
\end{align}\]
So value of $\cos \theta $ become as:
$\cos {{0}^{\circ }}=1,\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2},\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\cos {{60}^{\circ }}=\dfrac{1}{2},\cos {{90}^{\circ }}=0$.
Now let us find value of $\tan \theta $.
As we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ so we get value of
\[\begin{align}
& \Rightarrow \tan {{0}^{\circ }}=\dfrac{\sin {{0}^{\circ }}}{\cos {{0}^{\circ }}}=\dfrac{0}{1}=0 \\
& \Rightarrow \tan {{30}^{\circ }}=\dfrac{\sin {{30}^{\circ }}}{\cos {{30}^{\circ }}}=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\dfrac{1}{2}\times \dfrac{2}{\sqrt{3}}=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow \tan {{45}^{\circ }}=\dfrac{\sin {{45}^{\circ }}}{\cos {{45}^{\circ }}}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}}=1 \\
& \Rightarrow \tan {{60}^{\circ }}=\dfrac{\sin {{60}^{\circ }}}{\cos {{60}^{\circ }}}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}=\dfrac{\sqrt{3}}{2}\times \dfrac{2}{1}=\sqrt{3} \\
& \Rightarrow \tan {{90}^{\circ }}=\dfrac{\sin {{90}^{\circ }}}{\cos {{90}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
\end{align}\]
Hence the value of $\tan \theta $ are:
$\tan {{0}^{\circ }}=0,\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}},\tan {{45}^{\circ }}=1,\tan {{60}^{\circ }}=\sqrt{3},\tan {{90}^{\circ }}=\text{not defined}$
Now we need to find the values of $\cot \theta $. As we know $\cot \theta =\dfrac{1}{\tan \theta }$ so the value of $\cot \theta $ will just be reciprocal of $\tan \theta $. Hence, we can find value as:
\[\begin{align}
& \Rightarrow \cot {{0}^{\circ }}=\dfrac{1}{\tan {{0}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
& \Rightarrow \cot {{30}^{\circ }}=\dfrac{1}{\tan {{30}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{3}}}=\sqrt{3} \\
& \Rightarrow \cot {{45}^{\circ }}=\dfrac{1}{\tan {{45}^{\circ }}}=\dfrac{1}{1}=1 \\
& \Rightarrow \cot {{60}^{\circ }}=\dfrac{1}{\tan {{60}^{\circ }}}=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow \cot {{90}^{\circ }}=\dfrac{1}{\tan {{90}^{\circ }}}=\dfrac{1}{\dfrac{1}{0}}=\text{0} \\
\end{align}\]
Hence we have found values of $\cot \theta $ also.
Now for finding the value of $\text{cosec}\theta $ we just need to take reciprocal of values of $\sin \theta $ as $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ so we get:
\[\begin{align}
& \Rightarrow \text{cosec}{{0}^{\circ }}=\dfrac{1}{\sin {{0}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
& \Rightarrow \text{cosec}{{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}}=\dfrac{1}{\dfrac{1}{2}}=2 \\
& \Rightarrow \text{cosec}{{45}^{\circ }}=\dfrac{1}{\sin {{45}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{2}}}=\sqrt{2} \\
& \Rightarrow \text{cosec}{{60}^{\circ }}=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{1}{\dfrac{\sqrt{3}}{2}}=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \text{cosec}{{90}^{\circ }}=\dfrac{1}{\sin {{90}^{\circ }}}=\dfrac{1}{1}=\text{1} \\
\end{align}\]
Hence we have found values of $\text{cosec}\theta $ also.
Now, for finding values of $\sec \theta $ we just need to take reciprocal of $\cos \theta $ as $\sec \theta =\dfrac{1}{\cos \theta }$s so we get:
\[\begin{align}
& \Rightarrow \text{sec}{{0}^{\circ }}=\dfrac{1}{\cos {{0}^{\circ }}}=\dfrac{1}{1}=\text{1} \\
& \Rightarrow \text{sec}{{30}^{\circ }}=\dfrac{1}{\cos {{30}^{\circ }}}=\dfrac{1}{\dfrac{\sqrt{3}}{2}}=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \text{sec}{{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{2}}}=\sqrt{2} \\
& \Rightarrow \text{sec}{{60}^{\circ }}=\dfrac{1}{\cos {{60}^{\circ }}}=\dfrac{1}{\dfrac{1}{2}}=2 \\
& \Rightarrow \text{sec}{{90}^{\circ }}=\dfrac{1}{\cos {{90}^{\circ }}}=\dfrac{1}{0}=\text{not defined} \\
\end{align}\]
Hence we have found values of $\sec \theta $ also.
Putting all these values in the form of table, we get trigonometric ratio table as:
| Angles | ${{0}^{\circ }}$ | ${{30}^{\circ }}$ | ${{45}^{\circ }}$ | ${{60}^{\circ }}$ | \[{{90}^{\circ }}\] |
| sin | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{\sqrt{3}}{2}$ | 1 |
| cos | 1 | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{1}{2}$ | 0 |
| tan | 0 | $\dfrac{1}{\sqrt{3}}$ | 1 | $\sqrt{3}$ | $\infty $ |
| cot | $\infty $ | $\sqrt{3}$ | 1 | $\dfrac{1}{\sqrt{3}}$ | 0 |
| cosec | $\infty $ | 2 | $\sqrt{2}$ | $\dfrac{2}{\sqrt{3}}$ | 1 |
| sec | 1 | $\dfrac{2}{\sqrt{3}}$ | $\sqrt{2}$ | 2 | $\infty $ |
From the table we can find values that are not defined which are:
$\tan {{90}^{\circ }},\cot {{0}^{\circ }},\text{cosec}{{0}^{\circ }}\text{ and }\sec {{90}^{\circ }}$.
Hence required trigonometric ratios are $\tan {{90}^{\circ }},\cot {{0}^{\circ }},\text{cosec}{{0}^{\circ }}\text{ and }\sec {{90}^{\circ }}$.
So, the correct answer is “Option A”.
Note: Students can memorize the values of $\sin \theta $ in following way:
Divide 0, 1, 2, 3, 4 by 4 and take under root. Then values of $\sin \theta $ will be:
| sin${{0}^{\circ }}$ | sin${{30}^{\circ }}$ | sin${{45}^{\circ }}$ | sin${{60}^{\circ }}$ | sin\[{{90}^{\circ }}\] |
| $\sqrt{\dfrac{0}{4}=0}$ | $\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}$ | $\sqrt{\dfrac{2}{4}}=\dfrac{1}{\sqrt{2}}$ | $\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{2}$ | $\sqrt{\dfrac{4}{4}}=1$ |
Students should note that, ratios whose values are $\dfrac{1}{0},\infty $ are considered as not defined values. Take care while finding the values.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

