
How many triangles can be formed by joining the vertices of a hexagon?
A. 31
B. 25
C. 20
D. 60
Answer
582.9k+ views
Hint: As we know that hexagon has \[6\] vertices means \[6\] points and the triangle has \[3\] points means a triangle need \[3\] vertices to be formed. Then, the numbers of triangles that can be formed by joining the vertices of a hexagon can be calculated by applying the concept of combination.
Complete step by step solution:
The number of vertices in a hexagon is \[6\].
The number of vertices in a triangle is \[3\].
That means to make a triangle we need \[3\] vertices.
So,\[6\]is the total number of vertices in hexagons, and out of those 6 vertices, 3 vertices that being chosen at a time to make a triangle.
By applying the formula of combination:
\[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] where, n is the total numbers of objects and r is the number of objects to be chosen as a time.
Therefore,
\[{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( {6 - 3} \right)!}} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}}\]
By using the values of factorial terms:
We have, \[6!\] can be written as \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\] can be written as \[3 \times 2 \times 1.\]
Replace \[6!\] = \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\]= \[3 \times 2 \times 1\] in the following equation,
\[
{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}} \\
= \dfrac{{6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1\left( {3 \times 2 \times 1} \right)}} = \dfrac{{120}}{6} = 20 \\
\]
$\therefore$ The number of triangles that can be formed by joining the vertices of a hexagon is \[20\]. Hence, option (C) is correct.
Note:
These types of questions always use a combination concept for solving the problem.
Some important definitions you should know
Vertices mean the point where \[2\] or more lines meet.
Combination: Any of the ways we can combine things when the order does not matter.
Combination formula: The formula of combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\], where \[n\] represents the number of items and \[r\] represents the number of the items that being chosen at a time.
The factorial function\[(!)\]: The factorial function means to multiply all whole numbers from the chosen numbers down to \[1\].
The representation of factorial is \[n!\].
Alternatively, you can draw the figure and count the triangles but it becomes complicated.
Complete step by step solution:
The number of vertices in a hexagon is \[6\].
The number of vertices in a triangle is \[3\].
That means to make a triangle we need \[3\] vertices.
So,\[6\]is the total number of vertices in hexagons, and out of those 6 vertices, 3 vertices that being chosen at a time to make a triangle.
By applying the formula of combination:
\[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] where, n is the total numbers of objects and r is the number of objects to be chosen as a time.
Therefore,
\[{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( {6 - 3} \right)!}} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}}\]
By using the values of factorial terms:
We have, \[6!\] can be written as \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\] can be written as \[3 \times 2 \times 1.\]
Replace \[6!\] = \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\]= \[3 \times 2 \times 1\] in the following equation,
\[
{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}} \\
= \dfrac{{6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1\left( {3 \times 2 \times 1} \right)}} = \dfrac{{120}}{6} = 20 \\
\]
$\therefore$ The number of triangles that can be formed by joining the vertices of a hexagon is \[20\]. Hence, option (C) is correct.
Note:
These types of questions always use a combination concept for solving the problem.
Some important definitions you should know
Vertices mean the point where \[2\] or more lines meet.
Combination: Any of the ways we can combine things when the order does not matter.
Combination formula: The formula of combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\], where \[n\] represents the number of items and \[r\] represents the number of the items that being chosen at a time.
The factorial function\[(!)\]: The factorial function means to multiply all whole numbers from the chosen numbers down to \[1\].
The representation of factorial is \[n!\].
Alternatively, you can draw the figure and count the triangles but it becomes complicated.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

