
To prove that $3{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$, using a range $x \in \left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]$.
Answer
581.4k+ views
Hint: In this problem, using the trigonometric function range table to define value and reverse trigonometric method for confirming equal on both sides. We're taking one side of it to solve this problem. And make the other side as the final solution.
Formula used: To put $x = \sin \theta $
Then ${\sin ^{ - 1}}x = \theta $
The given trigonometric function of $\sin 3x = 3\sin x - 4{\sin ^3}x$ is derived to get $\left( {{{\sin }^{ - 1}}\left( {\sin x} \right) = x} \right)$
Complete step-by-step answer:
Given that,
The value of L.H.S is $3{\sin ^{ - 1}}x$
the value of R.H.S is ${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$
Let take R.H.S values,
R.H.S
${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$…………$(1)$
To put $x = \sin \theta $
To substituting a value $x$ in given equation
We get,
$\Rightarrow$${\sin ^{ - 1}}\left( {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right)$
Now we using a trigonometric formula, and the range of the function is $\dfrac{1}{2} \leqslant - 4{x^3} \leqslant - \dfrac{1}{2}$
We know that,
The trigonometric value of ${\sin ^{ - 1}}\left( {3\sin \theta - 4\left( {{{\sin }^3}\theta } \right)} \right)$ the equation is given by
$\Rightarrow$${\sin ^{ - 1}}\left( {\sin 3\theta } \right)$………..$(2)$
On simplifying the value,
Again, we use trigonometric formula in equation $(2)$
We get the value of R.H.S is $3\theta $
By using the above formula, we apply for $\theta $ value
To solving a given $3\theta $
Therefore,
$\Rightarrow$$3\theta = $$3{\sin ^{ - 1}}x$
Hence proved that the given L.H.S is equal to R.H.S
$\Rightarrow$$3{\sin ^{ - 1}}x = \sin \left( {3x - 4{x^3}} \right)$
Note: Alternative method
Using the trigonometric range formula,
Therefore,
$\Rightarrow$$\sin 3\theta = 3x - 4{x^{^3}}$
On simplifying,
$\Rightarrow$$3\theta = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$
Using trigonometric formula,
$x = \sin \theta $
$\Rightarrow$${\sin ^{ - 1}}x = \theta $
To apply the above formula,
We get,
$\Rightarrow$$3{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$
Hence the solution is proved.
Formula used: To put $x = \sin \theta $
Then ${\sin ^{ - 1}}x = \theta $
The given trigonometric function of $\sin 3x = 3\sin x - 4{\sin ^3}x$ is derived to get $\left( {{{\sin }^{ - 1}}\left( {\sin x} \right) = x} \right)$
Complete step-by-step answer:
Given that,
The value of L.H.S is $3{\sin ^{ - 1}}x$
the value of R.H.S is ${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$
Let take R.H.S values,
R.H.S
${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$…………$(1)$
To put $x = \sin \theta $
To substituting a value $x$ in given equation
We get,
$\Rightarrow$${\sin ^{ - 1}}\left( {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right)$
Now we using a trigonometric formula, and the range of the function is $\dfrac{1}{2} \leqslant - 4{x^3} \leqslant - \dfrac{1}{2}$
We know that,
The trigonometric value of ${\sin ^{ - 1}}\left( {3\sin \theta - 4\left( {{{\sin }^3}\theta } \right)} \right)$ the equation is given by
$\Rightarrow$${\sin ^{ - 1}}\left( {\sin 3\theta } \right)$………..$(2)$
On simplifying the value,
Again, we use trigonometric formula in equation $(2)$
We get the value of R.H.S is $3\theta $
By using the above formula, we apply for $\theta $ value
To solving a given $3\theta $
Therefore,
$\Rightarrow$$3\theta = $$3{\sin ^{ - 1}}x$
Hence proved that the given L.H.S is equal to R.H.S
$\Rightarrow$$3{\sin ^{ - 1}}x = \sin \left( {3x - 4{x^3}} \right)$
Note: Alternative method
Using the trigonometric range formula,
Therefore,
$\Rightarrow$$\sin 3\theta = 3x - 4{x^{^3}}$
On simplifying,
$\Rightarrow$$3\theta = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$
Using trigonometric formula,
$x = \sin \theta $
$\Rightarrow$${\sin ^{ - 1}}x = \theta $
To apply the above formula,
We get,
$\Rightarrow$$3{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$
Hence the solution is proved.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

