Answer
Verified
439.5k+ views
Hint: Recall that the number of beats produced per second is also called beat frequency. We know that waves superpose to form beats. But when waves of equal amplitudes superpose, what property of the waves undergo interference? In other words, beats are formed when the waves that superpose “occur” at least once together. This “occurrence” can be obtained by finding the difference between the very same property of the waves that undergo interference.
Formula used:
Beat frequency $=|{{f}_{min}}-{{f}_{max}}|$ or just $={{f}_{max}}-{{f}_{min}}$
Complete step-by-step answer:
Let us first try to use a rather intuitive approach to solving this problem.
The frequency of a sound wave is the number of times the wave passes through a fixed point in a given amount of time. Since frequency of sound waves is usually measured in Hz or $s^{-1}$ it basically describes the number of times the wave passes through a fixed point in 1 second (per second).
Now what are beats? Beats are the vibrations that are produced as a result of superimposing two or more sound waves of similar frequencies. They occur as a result of constructive interference of the waves where their crests or troughs overlap simultaneously.
Now if an interference is to occur between waves 1 and 2, where $v-1$ and $v$ number of waves pass through together in a second, then there is only $|(v-1)-(v)|$ chance for them to overlap. Thus there is only 1 beat produced from waves 1 and 2.
Similarly, if an interference is to occur between waves 2 and 3, where $v$ and $v+1$ number of waves pass through together in a second, then there is only $|(v)-(v+1)|$ chance for them to overlap. Thus, there is only 1 beat produced from waves 2 and 3 as well.
Similarly, if an interference is to occur between waves 1 and 3, where $v-1$ and $v+1$ number of waves pass through together in a second, then there are $|(v-1)-(v+1)|$ chances for them to overlap. Thus, there are 2 beats produced from waves 1 and 3.
We can conclude that the number of beats per second can be quantified as the modulus of the maximum difference in interfering wave frequencies i.e.,
Number of beats per second (beat frequency) $=|{{f}_{min}}-{{f}_{max}}|$ or just $={{f}_{max}}-{{f}_{min}}$
Therefore, the maximum number of beats produced per second will be via the interference of waves 1 and 3 and they will produce 2 beats per second.
So, the correct answer is “Option C”.
Note:
In case of just two waves with similar frequencies the number of beats produced will just be the difference in their frequencies. Remember that beat frequency and wave frequency are different as beat frequency is obtained from the superposition of individual waves while wave frequency is an innate property of the wave produced.
Formula used:
Beat frequency $=|{{f}_{min}}-{{f}_{max}}|$ or just $={{f}_{max}}-{{f}_{min}}$
Complete step-by-step answer:
Let us first try to use a rather intuitive approach to solving this problem.
The frequency of a sound wave is the number of times the wave passes through a fixed point in a given amount of time. Since frequency of sound waves is usually measured in Hz or $s^{-1}$ it basically describes the number of times the wave passes through a fixed point in 1 second (per second).
Now what are beats? Beats are the vibrations that are produced as a result of superimposing two or more sound waves of similar frequencies. They occur as a result of constructive interference of the waves where their crests or troughs overlap simultaneously.
Now if an interference is to occur between waves 1 and 2, where $v-1$ and $v$ number of waves pass through together in a second, then there is only $|(v-1)-(v)|$ chance for them to overlap. Thus there is only 1 beat produced from waves 1 and 2.
Similarly, if an interference is to occur between waves 2 and 3, where $v$ and $v+1$ number of waves pass through together in a second, then there is only $|(v)-(v+1)|$ chance for them to overlap. Thus, there is only 1 beat produced from waves 2 and 3 as well.
Similarly, if an interference is to occur between waves 1 and 3, where $v-1$ and $v+1$ number of waves pass through together in a second, then there are $|(v-1)-(v+1)|$ chances for them to overlap. Thus, there are 2 beats produced from waves 1 and 3.
We can conclude that the number of beats per second can be quantified as the modulus of the maximum difference in interfering wave frequencies i.e.,
Number of beats per second (beat frequency) $=|{{f}_{min}}-{{f}_{max}}|$ or just $={{f}_{max}}-{{f}_{min}}$
Therefore, the maximum number of beats produced per second will be via the interference of waves 1 and 3 and they will produce 2 beats per second.
So, the correct answer is “Option C”.
Note:
In case of just two waves with similar frequencies the number of beats produced will just be the difference in their frequencies. Remember that beat frequency and wave frequency are different as beat frequency is obtained from the superposition of individual waves while wave frequency is an innate property of the wave produced.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE