
Three perfect gases at absolute temperature ${{\text{T}}_{1}},{{\text{T}}_{2}}$ and${{\text{T}}_{3}}$ are mixed. The masses of molecules are${{\text{m}}_{1}},{{\text{m}}_{2}}$ and${{\text{m}}_{3}}$ and the number of molecules are${{\text{n}}_{1}},{{\text{n}}_{2}}$ and${{\text{n}}_{3}}$ respectively. Assuming no less of energy, the final temperature of the mixture is:
A.\[\dfrac{\left( {{\text{T}}_{1}}+{{\text{T}}_{2}}+{{\text{T}}_{3}} \right)}{3}\]
B.$\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}$
C.$\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}^{2}+{{\text{n}}_{2}}{{\text{T}}_{2}}^{2}+{{\text{n}}_{3}}{{\text{T}}_{3}}^{2}}{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}$
D.$\dfrac{{{\text{n}}_{1}}^{2}{{\text{T}}_{1}}^{2}+{{\text{n}}_{2}}^{2}{{\text{T}}_{2}}^{2}+{{\text{n}}_{3}}^{2}{{\text{T}}_{3}}^{2}}{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}$
Answer
564.9k+ views
Hint: The K.E of n molecules given by$\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)$. The total kinetic energy to the sum of kinetic energies of individual gases from this, the required result can be obtained.
Complete answer:
For perfect gases.
Kinetic energy of n molecules$\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)$
As there are three perfect gases.
So K.E\[=\left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}{{\text{K}}_{\text{B}}}\text{T} \right)\]
Now, total kinetic energy is equal to the sum of kinetic energies of individual gases.
So, n total K.E
$\begin{align}
& ={{\text{n}}_{1}}{{\left( \text{K}\text{.E} \right)}_{1}}+{{\text{n}}_{2}}{{\left( \text{K}\text{.E} \right)}_{2}}+{{\text{n}}_{3}}{{\left( \text{K}\text{.E} \right)}_{3}} \\
& \left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)={{\text{n}}_{1}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{1}} \right)+{{\text{n}}_{2}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{2}} \right)+{{\text{n}}_{3}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{3}} \right) \\
\end{align}$
Here ${{\text{T}}_{1}},{{\text{T}}_{2}},{{\text{T}}_{3}}$ are temperatures of individual gases.
So,$\left( {{\text{n}}_{1}},{{\text{n}}_{2}},{{\text{n}}_{3}} \right)\text{T}={{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}$
Or $\text{T}=\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}$
So, the correct option is (B).
Note:
Perfect gas is also called an ideal gas. The ideal gas law PV = nRT relies on the assumptions.
The gas consists of a large number of molecules which are in random motion.
The volume of the molecules is negligibly small compared to volume occupied by gas.
No forces act on the molecules except during elastic collisions of negligible duration.
Complete answer:
For perfect gases.
Kinetic energy of n molecules$\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)$
As there are three perfect gases.
So K.E\[=\left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}{{\text{K}}_{\text{B}}}\text{T} \right)\]
Now, total kinetic energy is equal to the sum of kinetic energies of individual gases.
So, n total K.E
$\begin{align}
& ={{\text{n}}_{1}}{{\left( \text{K}\text{.E} \right)}_{1}}+{{\text{n}}_{2}}{{\left( \text{K}\text{.E} \right)}_{2}}+{{\text{n}}_{3}}{{\left( \text{K}\text{.E} \right)}_{3}} \\
& \left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)={{\text{n}}_{1}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{1}} \right)+{{\text{n}}_{2}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{2}} \right)+{{\text{n}}_{3}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{3}} \right) \\
\end{align}$
Here ${{\text{T}}_{1}},{{\text{T}}_{2}},{{\text{T}}_{3}}$ are temperatures of individual gases.
So,$\left( {{\text{n}}_{1}},{{\text{n}}_{2}},{{\text{n}}_{3}} \right)\text{T}={{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}$
Or $\text{T}=\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}$
So, the correct option is (B).
Note:
Perfect gas is also called an ideal gas. The ideal gas law PV = nRT relies on the assumptions.
The gas consists of a large number of molecules which are in random motion.
The volume of the molecules is negligibly small compared to volume occupied by gas.
No forces act on the molecules except during elastic collisions of negligible duration.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

