
Three perfect gases at absolute temperature ${{\text{T}}_{1}},{{\text{T}}_{2}}$ and${{\text{T}}_{3}}$ are mixed. The masses of molecules are${{\text{m}}_{1}},{{\text{m}}_{2}}$ and${{\text{m}}_{3}}$ and the number of molecules are${{\text{n}}_{1}},{{\text{n}}_{2}}$ and${{\text{n}}_{3}}$ respectively. Assuming no less of energy, the final temperature of the mixture is:
A.\[\dfrac{\left( {{\text{T}}_{1}}+{{\text{T}}_{2}}+{{\text{T}}_{3}} \right)}{3}\]
B.$\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}$
C.$\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}^{2}+{{\text{n}}_{2}}{{\text{T}}_{2}}^{2}+{{\text{n}}_{3}}{{\text{T}}_{3}}^{2}}{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}$
D.$\dfrac{{{\text{n}}_{1}}^{2}{{\text{T}}_{1}}^{2}+{{\text{n}}_{2}}^{2}{{\text{T}}_{2}}^{2}+{{\text{n}}_{3}}^{2}{{\text{T}}_{3}}^{2}}{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}$
Answer
550.8k+ views
Hint: The K.E of n molecules given by$\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)$. The total kinetic energy to the sum of kinetic energies of individual gases from this, the required result can be obtained.
Complete answer:
For perfect gases.
Kinetic energy of n molecules$\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)$
As there are three perfect gases.
So K.E\[=\left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}{{\text{K}}_{\text{B}}}\text{T} \right)\]
Now, total kinetic energy is equal to the sum of kinetic energies of individual gases.
So, n total K.E
$\begin{align}
& ={{\text{n}}_{1}}{{\left( \text{K}\text{.E} \right)}_{1}}+{{\text{n}}_{2}}{{\left( \text{K}\text{.E} \right)}_{2}}+{{\text{n}}_{3}}{{\left( \text{K}\text{.E} \right)}_{3}} \\
& \left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)={{\text{n}}_{1}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{1}} \right)+{{\text{n}}_{2}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{2}} \right)+{{\text{n}}_{3}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{3}} \right) \\
\end{align}$
Here ${{\text{T}}_{1}},{{\text{T}}_{2}},{{\text{T}}_{3}}$ are temperatures of individual gases.
So,$\left( {{\text{n}}_{1}},{{\text{n}}_{2}},{{\text{n}}_{3}} \right)\text{T}={{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}$
Or $\text{T}=\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}$
So, the correct option is (B).
Note:
Perfect gas is also called an ideal gas. The ideal gas law PV = nRT relies on the assumptions.
The gas consists of a large number of molecules which are in random motion.
The volume of the molecules is negligibly small compared to volume occupied by gas.
No forces act on the molecules except during elastic collisions of negligible duration.
Complete answer:
For perfect gases.
Kinetic energy of n molecules$\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)$
As there are three perfect gases.
So K.E\[=\left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}{{\text{K}}_{\text{B}}}\text{T} \right)\]
Now, total kinetic energy is equal to the sum of kinetic energies of individual gases.
So, n total K.E
$\begin{align}
& ={{\text{n}}_{1}}{{\left( \text{K}\text{.E} \right)}_{1}}+{{\text{n}}_{2}}{{\left( \text{K}\text{.E} \right)}_{2}}+{{\text{n}}_{3}}{{\left( \text{K}\text{.E} \right)}_{3}} \\
& \left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)={{\text{n}}_{1}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{1}} \right)+{{\text{n}}_{2}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{2}} \right)+{{\text{n}}_{3}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{3}} \right) \\
\end{align}$
Here ${{\text{T}}_{1}},{{\text{T}}_{2}},{{\text{T}}_{3}}$ are temperatures of individual gases.
So,$\left( {{\text{n}}_{1}},{{\text{n}}_{2}},{{\text{n}}_{3}} \right)\text{T}={{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}$
Or $\text{T}=\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}$
So, the correct option is (B).
Note:
Perfect gas is also called an ideal gas. The ideal gas law PV = nRT relies on the assumptions.
The gas consists of a large number of molecules which are in random motion.
The volume of the molecules is negligibly small compared to volume occupied by gas.
No forces act on the molecules except during elastic collisions of negligible duration.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

