
Three normals are drawn to the parabola \[{{y}^{2}}=4ax\cos a\] from any point lying on the straight line \[y=b\sin a\]. Prove that the locus of the orthocenter of the triangles formed by the corresponding tangents is the curve \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\], the angle\[\alpha \] being variable.
Answer
614.7k+ views
Hint: Consider \[x=\lambda \] and \[y=\beta \sin \alpha \], thus forming the point of contact with point \[\left( \lambda ,b\sin \alpha \right)\].
Complete step-by-step answer:
Given that the equation of a parabola is \[{{y}^{2}}=4ax\cos a\]
where ‘a’ can be written as, \[{{y}^{2}}=4Ax\] where \[A=a\cos \alpha \].
Considering the parabola is drawn, \[{{y}^{2}}=4Ax\] from fig.1.
Let \[P,Q\] and \[R\] be the tangents that are drawn to the parabola.
From the figure, the normal meets at the point \[\left( \lambda ,b\sin \alpha \right)\].
Let the slope be taken by the formula.
\[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m\]
Let us take the slope \[m=-t\]
The equation of the line perpendicular will get from the equation \[y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)\] for the point \[\left( a{{t}^{2}},2at \right)\] where \[x=a{{t}^{2}},y=2at\]
By substituting the values, we get
\[y-\left( 2at \right)=-t\left( x-\left( a{{t}^{2}} \right) \right)\Rightarrow y-2at=-t\left(
x-a{{t}^{2}} \right)\]
\[\Rightarrow y-2at=-tx+a{{t}^{3}}\]
\[\therefore y+tx=2At+a{{t}^{3}}.....\left( i \right)\]
The coordinates of points of intersection of tangents in a parabola can be found by considering
\[A\left( at_{1}^{2},2a{{t}_{1}} \right),B\left( at_{2}^{2},2a{{t}_{2}} \right)\]
Equation of parabola \[\Rightarrow {{y}^{2}}=4ax\]
The equation of the tangent at \[{{t}_{1}}=y{{t}_{1}}=x+at_{1}^{2}.....\left( i \right)\]
The equation of the tangent at \[{{t}_{2}}=y{{t}_{2}}=x+at_{2}^{2}.....\left( ii \right)\]
\[\left( i \right)-\left( ii \right)\]\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left(
t_{1}^{2}-t_{2}^{2} \right)\]
\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left( {{t}_{1}}-{{t}_{2}} \right)\left(
{{t}_{1}}+{{t}_{2}} \right)\]
\[\therefore y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
From equation\[\left( i \right)\]\[\Rightarrow y{{t}_{1}}=x+at_{1}^{2}\Rightarrow a\left(
{{t}_{1}}+{{t}_{2}} \right){{t}_{1}}=x+at_{1}^{2}\]
\[at_{1}^{2}+a{{t}_{1}}{{t}_{2}}=x+at_{1}^{2}\Rightarrow x=a{{t}_{1}}{{t}_{2}}\]
\[\therefore \]Point of intersection \[=\left( x,y \right)=\left( a{{t}_{1}}{{t}_{2}},a\left(
{{t}_{1}}+{{t}_{2}} \right) \right)\]
From fig 1. For point\[\left( \lambda ,b\sin \alpha \right)\], \[y=b\sin \alpha \]and
\[x=\lambda \].
Substituting it on equation \[\left( i \right)\]
\[b\sin \alpha +t\lambda =2At+A{{t}^{3}}\]
By rearranging the above equation, we get
\[A{{t}^{3}}+2At-t\lambda -b\sin \alpha =0\]
\[A{{t}^{3}}+t\left( 2A-\lambda \right)-b\sin \alpha =0\]
Let us consider \[3\]roots as \[{{t}_{1}},{{t}_{2}}\]and \[{{t}_{3}}\]. The algebraic sum of these ordinates is zero.
\[\therefore {{t}_{1}}+{{t}_{2}}+{{t}_{3}}=0\]
Similarly, the perpendicular to the normal, i.e. product of the root of the slope.
\[{{t}_{1}}{{t}_{2}}{{t}_{3}}=\dfrac{b\sin \alpha }{A}\]
Let us consider \[\left( h,k \right)\]as \[\left( x,y \right)\]
\[h=-A=-a\cos \alpha .....\left( ii \right)\]
\[k=A\left( {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{1}}.{{t}_{2}}.{{t}_{3}} \right)=A\left(
0+\dfrac{b\sin \alpha }{A} \right)\]
\[\therefore k=b\sin \alpha ....\left( iii \right)\]
\[\left( h,k \right)=\left( x,y \right)\]
\[\therefore x=-a\cos \alpha \]and \[y=b\sin \alpha \]
Therefore from \[\left( i \right)\]and \[\left( ii \right)\], we get the locus as
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Note: The focal distance of a point \[\left( x,y \right)\]on the ellipse
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]is constant and equal to the
length of the major axis.
Complete step-by-step answer:
Given that the equation of a parabola is \[{{y}^{2}}=4ax\cos a\]
where ‘a’ can be written as, \[{{y}^{2}}=4Ax\] where \[A=a\cos \alpha \].
Considering the parabola is drawn, \[{{y}^{2}}=4Ax\] from fig.1.
Let \[P,Q\] and \[R\] be the tangents that are drawn to the parabola.
From the figure, the normal meets at the point \[\left( \lambda ,b\sin \alpha \right)\].
Let the slope be taken by the formula.
\[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m\]
Let us take the slope \[m=-t\]
The equation of the line perpendicular will get from the equation \[y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)\] for the point \[\left( a{{t}^{2}},2at \right)\] where \[x=a{{t}^{2}},y=2at\]
By substituting the values, we get
\[y-\left( 2at \right)=-t\left( x-\left( a{{t}^{2}} \right) \right)\Rightarrow y-2at=-t\left(
x-a{{t}^{2}} \right)\]
\[\Rightarrow y-2at=-tx+a{{t}^{3}}\]
\[\therefore y+tx=2At+a{{t}^{3}}.....\left( i \right)\]
The coordinates of points of intersection of tangents in a parabola can be found by considering
\[A\left( at_{1}^{2},2a{{t}_{1}} \right),B\left( at_{2}^{2},2a{{t}_{2}} \right)\]
Equation of parabola \[\Rightarrow {{y}^{2}}=4ax\]
The equation of the tangent at \[{{t}_{1}}=y{{t}_{1}}=x+at_{1}^{2}.....\left( i \right)\]
The equation of the tangent at \[{{t}_{2}}=y{{t}_{2}}=x+at_{2}^{2}.....\left( ii \right)\]
\[\left( i \right)-\left( ii \right)\]\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left(
t_{1}^{2}-t_{2}^{2} \right)\]
\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left( {{t}_{1}}-{{t}_{2}} \right)\left(
{{t}_{1}}+{{t}_{2}} \right)\]
\[\therefore y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
From equation\[\left( i \right)\]\[\Rightarrow y{{t}_{1}}=x+at_{1}^{2}\Rightarrow a\left(
{{t}_{1}}+{{t}_{2}} \right){{t}_{1}}=x+at_{1}^{2}\]
\[at_{1}^{2}+a{{t}_{1}}{{t}_{2}}=x+at_{1}^{2}\Rightarrow x=a{{t}_{1}}{{t}_{2}}\]
\[\therefore \]Point of intersection \[=\left( x,y \right)=\left( a{{t}_{1}}{{t}_{2}},a\left(
{{t}_{1}}+{{t}_{2}} \right) \right)\]
From fig 1. For point\[\left( \lambda ,b\sin \alpha \right)\], \[y=b\sin \alpha \]and
\[x=\lambda \].
Substituting it on equation \[\left( i \right)\]
\[b\sin \alpha +t\lambda =2At+A{{t}^{3}}\]
By rearranging the above equation, we get
\[A{{t}^{3}}+2At-t\lambda -b\sin \alpha =0\]
\[A{{t}^{3}}+t\left( 2A-\lambda \right)-b\sin \alpha =0\]
Let us consider \[3\]roots as \[{{t}_{1}},{{t}_{2}}\]and \[{{t}_{3}}\]. The algebraic sum of these ordinates is zero.
\[\therefore {{t}_{1}}+{{t}_{2}}+{{t}_{3}}=0\]
Similarly, the perpendicular to the normal, i.e. product of the root of the slope.
\[{{t}_{1}}{{t}_{2}}{{t}_{3}}=\dfrac{b\sin \alpha }{A}\]
Let us consider \[\left( h,k \right)\]as \[\left( x,y \right)\]
\[h=-A=-a\cos \alpha .....\left( ii \right)\]
\[k=A\left( {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{1}}.{{t}_{2}}.{{t}_{3}} \right)=A\left(
0+\dfrac{b\sin \alpha }{A} \right)\]
\[\therefore k=b\sin \alpha ....\left( iii \right)\]
\[\left( h,k \right)=\left( x,y \right)\]
\[\therefore x=-a\cos \alpha \]and \[y=b\sin \alpha \]
Therefore from \[\left( i \right)\]and \[\left( ii \right)\], we get the locus as
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Note: The focal distance of a point \[\left( x,y \right)\]on the ellipse
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]is constant and equal to the
length of the major axis.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

