
Three normals are drawn to the parabola \[{{y}^{2}}=4ax\cos a\] from any point lying on the straight line \[y=b\sin a\]. Prove that the locus of the orthocenter of the triangles formed by the corresponding tangents is the curve \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\], the angle\[\alpha \] being variable.
Answer
602.1k+ views
Hint: Consider \[x=\lambda \] and \[y=\beta \sin \alpha \], thus forming the point of contact with point \[\left( \lambda ,b\sin \alpha \right)\].
Complete step-by-step answer:
Given that the equation of a parabola is \[{{y}^{2}}=4ax\cos a\]
where ‘a’ can be written as, \[{{y}^{2}}=4Ax\] where \[A=a\cos \alpha \].
Considering the parabola is drawn, \[{{y}^{2}}=4Ax\] from fig.1.
Let \[P,Q\] and \[R\] be the tangents that are drawn to the parabola.
From the figure, the normal meets at the point \[\left( \lambda ,b\sin \alpha \right)\].
Let the slope be taken by the formula.
\[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m\]
Let us take the slope \[m=-t\]
The equation of the line perpendicular will get from the equation \[y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)\] for the point \[\left( a{{t}^{2}},2at \right)\] where \[x=a{{t}^{2}},y=2at\]
By substituting the values, we get
\[y-\left( 2at \right)=-t\left( x-\left( a{{t}^{2}} \right) \right)\Rightarrow y-2at=-t\left(
x-a{{t}^{2}} \right)\]
\[\Rightarrow y-2at=-tx+a{{t}^{3}}\]
\[\therefore y+tx=2At+a{{t}^{3}}.....\left( i \right)\]
The coordinates of points of intersection of tangents in a parabola can be found by considering
\[A\left( at_{1}^{2},2a{{t}_{1}} \right),B\left( at_{2}^{2},2a{{t}_{2}} \right)\]
Equation of parabola \[\Rightarrow {{y}^{2}}=4ax\]
The equation of the tangent at \[{{t}_{1}}=y{{t}_{1}}=x+at_{1}^{2}.....\left( i \right)\]
The equation of the tangent at \[{{t}_{2}}=y{{t}_{2}}=x+at_{2}^{2}.....\left( ii \right)\]
\[\left( i \right)-\left( ii \right)\]\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left(
t_{1}^{2}-t_{2}^{2} \right)\]
\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left( {{t}_{1}}-{{t}_{2}} \right)\left(
{{t}_{1}}+{{t}_{2}} \right)\]
\[\therefore y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
From equation\[\left( i \right)\]\[\Rightarrow y{{t}_{1}}=x+at_{1}^{2}\Rightarrow a\left(
{{t}_{1}}+{{t}_{2}} \right){{t}_{1}}=x+at_{1}^{2}\]
\[at_{1}^{2}+a{{t}_{1}}{{t}_{2}}=x+at_{1}^{2}\Rightarrow x=a{{t}_{1}}{{t}_{2}}\]
\[\therefore \]Point of intersection \[=\left( x,y \right)=\left( a{{t}_{1}}{{t}_{2}},a\left(
{{t}_{1}}+{{t}_{2}} \right) \right)\]
From fig 1. For point\[\left( \lambda ,b\sin \alpha \right)\], \[y=b\sin \alpha \]and
\[x=\lambda \].
Substituting it on equation \[\left( i \right)\]
\[b\sin \alpha +t\lambda =2At+A{{t}^{3}}\]
By rearranging the above equation, we get
\[A{{t}^{3}}+2At-t\lambda -b\sin \alpha =0\]
\[A{{t}^{3}}+t\left( 2A-\lambda \right)-b\sin \alpha =0\]
Let us consider \[3\]roots as \[{{t}_{1}},{{t}_{2}}\]and \[{{t}_{3}}\]. The algebraic sum of these ordinates is zero.
\[\therefore {{t}_{1}}+{{t}_{2}}+{{t}_{3}}=0\]
Similarly, the perpendicular to the normal, i.e. product of the root of the slope.
\[{{t}_{1}}{{t}_{2}}{{t}_{3}}=\dfrac{b\sin \alpha }{A}\]
Let us consider \[\left( h,k \right)\]as \[\left( x,y \right)\]
\[h=-A=-a\cos \alpha .....\left( ii \right)\]
\[k=A\left( {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{1}}.{{t}_{2}}.{{t}_{3}} \right)=A\left(
0+\dfrac{b\sin \alpha }{A} \right)\]
\[\therefore k=b\sin \alpha ....\left( iii \right)\]
\[\left( h,k \right)=\left( x,y \right)\]
\[\therefore x=-a\cos \alpha \]and \[y=b\sin \alpha \]
Therefore from \[\left( i \right)\]and \[\left( ii \right)\], we get the locus as
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Note: The focal distance of a point \[\left( x,y \right)\]on the ellipse
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]is constant and equal to the
length of the major axis.
Complete step-by-step answer:
Given that the equation of a parabola is \[{{y}^{2}}=4ax\cos a\]
where ‘a’ can be written as, \[{{y}^{2}}=4Ax\] where \[A=a\cos \alpha \].
Considering the parabola is drawn, \[{{y}^{2}}=4Ax\] from fig.1.
Let \[P,Q\] and \[R\] be the tangents that are drawn to the parabola.
From the figure, the normal meets at the point \[\left( \lambda ,b\sin \alpha \right)\].
Let the slope be taken by the formula.
\[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m\]
Let us take the slope \[m=-t\]
The equation of the line perpendicular will get from the equation \[y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)\] for the point \[\left( a{{t}^{2}},2at \right)\] where \[x=a{{t}^{2}},y=2at\]
By substituting the values, we get
\[y-\left( 2at \right)=-t\left( x-\left( a{{t}^{2}} \right) \right)\Rightarrow y-2at=-t\left(
x-a{{t}^{2}} \right)\]
\[\Rightarrow y-2at=-tx+a{{t}^{3}}\]
\[\therefore y+tx=2At+a{{t}^{3}}.....\left( i \right)\]
The coordinates of points of intersection of tangents in a parabola can be found by considering
\[A\left( at_{1}^{2},2a{{t}_{1}} \right),B\left( at_{2}^{2},2a{{t}_{2}} \right)\]
Equation of parabola \[\Rightarrow {{y}^{2}}=4ax\]
The equation of the tangent at \[{{t}_{1}}=y{{t}_{1}}=x+at_{1}^{2}.....\left( i \right)\]
The equation of the tangent at \[{{t}_{2}}=y{{t}_{2}}=x+at_{2}^{2}.....\left( ii \right)\]
\[\left( i \right)-\left( ii \right)\]\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left(
t_{1}^{2}-t_{2}^{2} \right)\]
\[\Rightarrow y\left( {{t}_{1}}-{{t}_{2}} \right)=a\left( {{t}_{1}}-{{t}_{2}} \right)\left(
{{t}_{1}}+{{t}_{2}} \right)\]
\[\therefore y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
From equation\[\left( i \right)\]\[\Rightarrow y{{t}_{1}}=x+at_{1}^{2}\Rightarrow a\left(
{{t}_{1}}+{{t}_{2}} \right){{t}_{1}}=x+at_{1}^{2}\]
\[at_{1}^{2}+a{{t}_{1}}{{t}_{2}}=x+at_{1}^{2}\Rightarrow x=a{{t}_{1}}{{t}_{2}}\]
\[\therefore \]Point of intersection \[=\left( x,y \right)=\left( a{{t}_{1}}{{t}_{2}},a\left(
{{t}_{1}}+{{t}_{2}} \right) \right)\]
From fig 1. For point\[\left( \lambda ,b\sin \alpha \right)\], \[y=b\sin \alpha \]and
\[x=\lambda \].
Substituting it on equation \[\left( i \right)\]
\[b\sin \alpha +t\lambda =2At+A{{t}^{3}}\]
By rearranging the above equation, we get
\[A{{t}^{3}}+2At-t\lambda -b\sin \alpha =0\]
\[A{{t}^{3}}+t\left( 2A-\lambda \right)-b\sin \alpha =0\]
Let us consider \[3\]roots as \[{{t}_{1}},{{t}_{2}}\]and \[{{t}_{3}}\]. The algebraic sum of these ordinates is zero.
\[\therefore {{t}_{1}}+{{t}_{2}}+{{t}_{3}}=0\]
Similarly, the perpendicular to the normal, i.e. product of the root of the slope.
\[{{t}_{1}}{{t}_{2}}{{t}_{3}}=\dfrac{b\sin \alpha }{A}\]
Let us consider \[\left( h,k \right)\]as \[\left( x,y \right)\]
\[h=-A=-a\cos \alpha .....\left( ii \right)\]
\[k=A\left( {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{1}}.{{t}_{2}}.{{t}_{3}} \right)=A\left(
0+\dfrac{b\sin \alpha }{A} \right)\]
\[\therefore k=b\sin \alpha ....\left( iii \right)\]
\[\left( h,k \right)=\left( x,y \right)\]
\[\therefore x=-a\cos \alpha \]and \[y=b\sin \alpha \]
Therefore from \[\left( i \right)\]and \[\left( ii \right)\], we get the locus as
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Note: The focal distance of a point \[\left( x,y \right)\]on the ellipse
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]is constant and equal to the
length of the major axis.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

