
There are three boys and two girls. A committee of two is to be formed. Find the probability of events that the committee contains one boy and one girl.
(a) $\dfrac{1}{5}$
(b) $\dfrac{2}{5}$
(c) $\dfrac{3}{5}$
(d) $\dfrac{4}{5}$
Answer
616.8k+ views
Hint: Calculate the number of ways to choose 1 boy out of 3 boys. Calculate the number of ways to choose 1 girl out of 2 girls. Calculate the number of ways to choose 2 people out of 5 people. Use the fact that the probability of any event is the ratio of the number of favourable outcomes to the total number of possible outcomes.
Complete step-by-step answer:
We have 3 boys and 2 girls. We have to calculate the probability of choosing 2 members of a committee such that it contains 1 girl and 1 boy.
We know that we can choose ‘r’ objects out of ‘n’ objects ${}^{n}{{C}_{r}}$ ways.
Substituting $n=3,r=1$ in the above formula, the number of ways to choose 1 boy out of 3 boys $={}^{3}{{C}_{1}}$ ways.
Substituting $n=2,r=1$ in the above formula, the number of ways to choose 1 girl out of 2 girls$={}^{2}{{C}_{1}}$ ways.
So, the total number of ways to choose 1 boy out of three boys and 1 girl out of 2 girls
$={}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}$ ways.
Substituting $n=5,r=2$ in the above formula, the number of ways to choose 2 people out of
5 $={}^{5}{{C}_{2}}$ ways.
We know that the probability of any event is the ratio of the number of favourable outcomes to the total number of possible outcomes.
Thus, the probability of choosing 1 boy and 1 girl in a committee of 5
$=\dfrac{{}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}}{{}^{5}{{C}_{1}}}$.
Simplifying the above expression, probability of choosing 1 boy and 1 girl in a committee of 5
$=\dfrac{\dfrac{3!}{1!2!}\times \dfrac{2!}{1!1!}}{\dfrac{5!}{2!3!}}=\dfrac{3\times
2}{\dfrac{5\times 4}{2}}=\dfrac{6}{10}=\dfrac{3}{5}$ .
Hence, the probability of choosing 1 boy and 1 girl in a committee of 5 is $\dfrac{3}{5}$, which is option (b).
Note: One must remember that the probability of any event lies in the range $\left[ 0,1 \right]$, where having 0 probability denotes that event can’t occur, and having probability equal to 1 denotes that the event will surely happen. We must know the formula${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Complete step-by-step answer:
We have 3 boys and 2 girls. We have to calculate the probability of choosing 2 members of a committee such that it contains 1 girl and 1 boy.
We know that we can choose ‘r’ objects out of ‘n’ objects ${}^{n}{{C}_{r}}$ ways.
Substituting $n=3,r=1$ in the above formula, the number of ways to choose 1 boy out of 3 boys $={}^{3}{{C}_{1}}$ ways.
Substituting $n=2,r=1$ in the above formula, the number of ways to choose 1 girl out of 2 girls$={}^{2}{{C}_{1}}$ ways.
So, the total number of ways to choose 1 boy out of three boys and 1 girl out of 2 girls
$={}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}$ ways.
Substituting $n=5,r=2$ in the above formula, the number of ways to choose 2 people out of
5 $={}^{5}{{C}_{2}}$ ways.
We know that the probability of any event is the ratio of the number of favourable outcomes to the total number of possible outcomes.
Thus, the probability of choosing 1 boy and 1 girl in a committee of 5
$=\dfrac{{}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}}{{}^{5}{{C}_{1}}}$.
Simplifying the above expression, probability of choosing 1 boy and 1 girl in a committee of 5
$=\dfrac{\dfrac{3!}{1!2!}\times \dfrac{2!}{1!1!}}{\dfrac{5!}{2!3!}}=\dfrac{3\times
2}{\dfrac{5\times 4}{2}}=\dfrac{6}{10}=\dfrac{3}{5}$ .
Hence, the probability of choosing 1 boy and 1 girl in a committee of 5 is $\dfrac{3}{5}$, which is option (b).
Note: One must remember that the probability of any event lies in the range $\left[ 0,1 \right]$, where having 0 probability denotes that event can’t occur, and having probability equal to 1 denotes that the event will surely happen. We must know the formula${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

