
There are 20 seats in some rows of a movie theatre and 5 people sit randomly in this row. The probability that no two persons sit side by side, is
Answer
536.7k+ views
Hint: In this question first find the total possible outcomes by making 5 people sit in 20 seats of a row. Then the favorable number of outcomes are computed by considering the group of 5 people as 1 subtracted by the total possible cases.
Complete Step-by-Step solution:
Total number of seats in a row is 20.
Total number of persons is 5.
Now the number of ways to arrange 5 persons on 20 seats is .
Now consider 5 persons as 1 so the total number of seats become (20 – 5 + 1) = 16
So the number of ways to arrange 1 person (which is equal to 5) on 16 seats is .
So the number of ways so that two persons sit side by side is = .
So the number of ways so that two persons sit side by side is =
Now as we know that the probability (P) is the ratio of favorable number of outcomes to total number of outcomes that is
Now as we know that so use this property in above equation we have,
Now simplify this we have,
So this is the required answer.
Hence option (B) is correct.
Note: The concept behind taking group of 5 people into one was to find the probability of no two of them sitting together, thus instead of finding it directly we have found it conversely, if we make them sit together and then subtract from the total possible arrangements than it gives the arrangements of them no being seated together. This concept helps solve problems of this kind.
Complete Step-by-Step solution:
Total number of seats in a row is 20.
Total number of persons is 5.
Now the number of ways to arrange 5 persons on 20 seats is
Now consider 5 persons as 1 so the total number of seats become (20 – 5 + 1) = 16
So the number of ways to arrange 1 person (which is equal to 5) on 16 seats is
So the number of ways so that two persons sit side by side is =
So the number of ways so that two persons sit side by side is =
Now as we know that the probability (P) is the ratio of favorable number of outcomes to total number of outcomes that is
Now as we know that
Now simplify this we have,
So this is the required answer.
Hence option (B) is correct.
Note: The concept behind taking group of 5 people into one was to find the probability of no two of them sitting together, thus instead of finding it directly we have found it conversely, if we make them sit together and then subtract from the total possible arrangements than it gives the arrangements of them no being seated together. This concept helps solve problems of this kind.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Difference between mass and weight class 10 physics CBSE

List out three methods of soil conservation

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

How does Tommy describe the old kind of school class 10 english CBSE
