Answer
Verified
419.1k+ views
Hint:
Here we need to find the coordinates of the square. We will first find the roots of the first equation to get the \[x\] coordinates of the vertices of the square. Then we will find the roots of the second equation to get the \[y\] coordinates of vertices of the square. From there, we will get all the possible vertices of the square.
Complete step by step solution:
It is given that \[x\] coordinates of the vertices of the square are the roots of the equation \[{x^2} - 3\mid x\mid + 2 = 0\]
Now, we will find the roots of this quadratic equation.
\[ \Rightarrow {x^2} - 3\mid x\mid + 2 = 0\]
Now, we will factorize this quadratic equation by splitting the middle terms.
\[ \Rightarrow {x^2} - 2\mid x\mid - \left| x \right| + 2 = 0\]
On further simplification, we get
\[ \Rightarrow \left( {\left| x \right| - 2} \right)\left( {\left| x \right| - 2} \right) = 0\]
Using zero product property, we get
\[ \Rightarrow \left( {\left| x \right| - 1} \right) = 0\] or \[\left( {\left| x \right| - 2} \right) = 0\]
Simplifying the equations, we get
\[ \Rightarrow \left| x \right| = 1\] or \[\left| x \right| = 2\]
We know that by removing the modulus, we will give two values.
Therefore, we get
\[x = - 1,1\] and \[x = - 2,2\]
Hence, the total possible values of \[x\] are \[ - 2\], \[ - 1\], 1 and 2.
Now, we will find the roots of this quadratic equation.
\[{y^2} - 3y + 2 = 0\]
Now, we will factorize this quadratic equation by splitting the middle terms. Therefore, we get
\[{y^2} - 2y - y + 2 = 0\]
On further simplification, we get
\[ \Rightarrow \left( {y - 1} \right)\left( {y - 2} \right) = 0\]
Using the zero product property, we get
\[ \Rightarrow \left( {y - 1} \right) = 0\] or \[\left( {y - 2} \right) = 0\]
Simplifying the equation, we get
\[ \Rightarrow y = 1\] and \[y = 2\]
Hence, the total possible values of \[y\] are 1 and 2.
It is given that the given square is of unit area. So the coordinates of the vertices of the square are
\[\left( {1,1} \right)\] , \[\left( {2,1} \right)\] , \[\left( {2,2} \right)\] , \[\left( {1,2} \right)\]
And also the coordinates of the vertices are:
\[\left( { - 1,1} \right)\] , \[\left( { - 2,1} \right)\] , \[\left( { - 2,2} \right)\] , \[\left( { - 1,2} \right)\]
Hence, the correct options are option A and option B.
Note:
Here, we have factorize the quadratic equation to find the roots of the equation. Roots of the quadratic equation are defined as the values of the variable which when put in the quadratic equation satisfy the equation. We need to keep in mind that the number of roots of the equation is equal to highest power of the equation. But here we got 4 values of \[x\] from the equation \[{x^2} - 3\mid x\mid + 2 = 0\] and not 2 because here we have modulus sign in the equation.
Here we need to find the coordinates of the square. We will first find the roots of the first equation to get the \[x\] coordinates of the vertices of the square. Then we will find the roots of the second equation to get the \[y\] coordinates of vertices of the square. From there, we will get all the possible vertices of the square.
Complete step by step solution:
It is given that \[x\] coordinates of the vertices of the square are the roots of the equation \[{x^2} - 3\mid x\mid + 2 = 0\]
Now, we will find the roots of this quadratic equation.
\[ \Rightarrow {x^2} - 3\mid x\mid + 2 = 0\]
Now, we will factorize this quadratic equation by splitting the middle terms.
\[ \Rightarrow {x^2} - 2\mid x\mid - \left| x \right| + 2 = 0\]
On further simplification, we get
\[ \Rightarrow \left( {\left| x \right| - 2} \right)\left( {\left| x \right| - 2} \right) = 0\]
Using zero product property, we get
\[ \Rightarrow \left( {\left| x \right| - 1} \right) = 0\] or \[\left( {\left| x \right| - 2} \right) = 0\]
Simplifying the equations, we get
\[ \Rightarrow \left| x \right| = 1\] or \[\left| x \right| = 2\]
We know that by removing the modulus, we will give two values.
Therefore, we get
\[x = - 1,1\] and \[x = - 2,2\]
Hence, the total possible values of \[x\] are \[ - 2\], \[ - 1\], 1 and 2.
Now, we will find the roots of this quadratic equation.
\[{y^2} - 3y + 2 = 0\]
Now, we will factorize this quadratic equation by splitting the middle terms. Therefore, we get
\[{y^2} - 2y - y + 2 = 0\]
On further simplification, we get
\[ \Rightarrow \left( {y - 1} \right)\left( {y - 2} \right) = 0\]
Using the zero product property, we get
\[ \Rightarrow \left( {y - 1} \right) = 0\] or \[\left( {y - 2} \right) = 0\]
Simplifying the equation, we get
\[ \Rightarrow y = 1\] and \[y = 2\]
Hence, the total possible values of \[y\] are 1 and 2.
It is given that the given square is of unit area. So the coordinates of the vertices of the square are
\[\left( {1,1} \right)\] , \[\left( {2,1} \right)\] , \[\left( {2,2} \right)\] , \[\left( {1,2} \right)\]
And also the coordinates of the vertices are:
\[\left( { - 1,1} \right)\] , \[\left( { - 2,1} \right)\] , \[\left( { - 2,2} \right)\] , \[\left( { - 1,2} \right)\]
Hence, the correct options are option A and option B.
Note:
Here, we have factorize the quadratic equation to find the roots of the equation. Roots of the quadratic equation are defined as the values of the variable which when put in the quadratic equation satisfy the equation. We need to keep in mind that the number of roots of the equation is equal to highest power of the equation. But here we got 4 values of \[x\] from the equation \[{x^2} - 3\mid x\mid + 2 = 0\] and not 2 because here we have modulus sign in the equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE