
The weighted mean of the first n natural numbers when their weights are equal to the corresponding natural number is :
A.$\dfrac{{{\text{n}}\,{\text{ + }}\,{\text{1}}}}{{\text{2}}}$
B.$\dfrac{{{\text{2n}}\,{\text{ + }}\,{\text{1}}}}{{\text{3}}}$
C.$\dfrac{{{\text{(n}}\,{\text{ + }}\,{\text{1)}}\,{\text{(2n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}$
D. None of these
Answer
581.1k+ views
Hint: A weighted mean is a kind of average. Instead of each data point contributing equally to the final mean, some data points contribute more “weight” than others.
Complete step-by-step answer:
Weighted means are a simple concept . All you have to do is multiply the numbers in your data set by the corresponding weights , and sum these multiplied numbers up , then , you need to add up all the weights and divide the previous sum by this sum .
Let ‘s make a table .
According to the question , the weight of a natural number is equal to the number itself .
Now , first we do $\sum\limits_{}^{} {{\text{Data}}\,{\text{set}}\,{{ \times }}\,{\text{weight}}} $
Which is ${{\text{1}}^{\text{2}}}\,{\text{ + }}\,{{\text{2}}^{\text{2}}}\,{\text{ + }}\,{{\text{3}}^{\text{2}}}\,{\text{ + }}..........\,{\text{ + }}\,{{\text{n}}^{\text{2}}}$ .
The standard summation of square of n natural number is given by :
\[\sum\limits_{{\text{m = 1}}}^{\text{n}} {\,{{\text{m}}^{\text{2}}}\,{\text{ = }}\,\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}} {\text{(2n}}\,{\text{ + }}\,{\text{1)}}\]
Then we sum up the weights which is
\[{\text{1}}\,{\text{ + }}\,{\text{2}}\,{\text{ + }}\,{\text{3}}\,{\text{ + }}\,.........\,{\text{ + }}\,{\text{n}}\]
The sum of the first n natural numbers is given by \[\sum\limits_{{\text{m = 1}}}^{\text{n}} {\,{\text{m}}\,{\text{ = }}\,\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{2}}}} \]
Now the weighted mean
\[\begin{gathered}
{\text{M}}\,{\text{ = }}\,\dfrac{{\sum\limits_{{\text{m}}\,{\text{ = }}\,{\text{1}}}^{\text{n}} {{{\text{m}}^{\text{2}}}} }}{{\sum\limits_{{\text{m}}\,{\text{ = }}\,{\text{1}}}^{\text{n}} {\text{m}} }} \\
{\text{ = }}\,\dfrac{{\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)(2n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}}}{{\dfrac{{{\text{n(n + 1)}}}}{{\text{2}}}}} \\
{\text{ = }}\,\dfrac{{{\text{2n + 1}}}}{{\text{3}}} \\
\end{gathered} \]
Hence, the option B is correct .
Note: Remember the following formulae :
1)Sum of first n natural no. s = $\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{2}}}$
2)Sum of squares of first n natural no. s = $\dfrac{{{\text{n}}\,{\text{(n}}\,{\text{ + }}\,{\text{1)}}\,{\text{(2n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}\,$
3)Sum of cubes of first n natural no. s = ${\left( {\dfrac{{{\text{n}}\,{\text{(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{2}}}} \right)^{\text{2}}}$
These formulae will come in handy in the future .
Complete step-by-step answer:
Weighted means are a simple concept . All you have to do is multiply the numbers in your data set by the corresponding weights , and sum these multiplied numbers up , then , you need to add up all the weights and divide the previous sum by this sum .
Let ‘s make a table .
| Data set | weight |
| 12::n | 12::n |
According to the question , the weight of a natural number is equal to the number itself .
Now , first we do $\sum\limits_{}^{} {{\text{Data}}\,{\text{set}}\,{{ \times }}\,{\text{weight}}} $
Which is ${{\text{1}}^{\text{2}}}\,{\text{ + }}\,{{\text{2}}^{\text{2}}}\,{\text{ + }}\,{{\text{3}}^{\text{2}}}\,{\text{ + }}..........\,{\text{ + }}\,{{\text{n}}^{\text{2}}}$ .
The standard summation of square of n natural number is given by :
\[\sum\limits_{{\text{m = 1}}}^{\text{n}} {\,{{\text{m}}^{\text{2}}}\,{\text{ = }}\,\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}} {\text{(2n}}\,{\text{ + }}\,{\text{1)}}\]
Then we sum up the weights which is
\[{\text{1}}\,{\text{ + }}\,{\text{2}}\,{\text{ + }}\,{\text{3}}\,{\text{ + }}\,.........\,{\text{ + }}\,{\text{n}}\]
The sum of the first n natural numbers is given by \[\sum\limits_{{\text{m = 1}}}^{\text{n}} {\,{\text{m}}\,{\text{ = }}\,\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{2}}}} \]
Now the weighted mean
\[\begin{gathered}
{\text{M}}\,{\text{ = }}\,\dfrac{{\sum\limits_{{\text{m}}\,{\text{ = }}\,{\text{1}}}^{\text{n}} {{{\text{m}}^{\text{2}}}} }}{{\sum\limits_{{\text{m}}\,{\text{ = }}\,{\text{1}}}^{\text{n}} {\text{m}} }} \\
{\text{ = }}\,\dfrac{{\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)(2n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}}}{{\dfrac{{{\text{n(n + 1)}}}}{{\text{2}}}}} \\
{\text{ = }}\,\dfrac{{{\text{2n + 1}}}}{{\text{3}}} \\
\end{gathered} \]
Hence, the option B is correct .
Note: Remember the following formulae :
1)Sum of first n natural no. s = $\dfrac{{{\text{n(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{2}}}$
2)Sum of squares of first n natural no. s = $\dfrac{{{\text{n}}\,{\text{(n}}\,{\text{ + }}\,{\text{1)}}\,{\text{(2n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{6}}}\,$
3)Sum of cubes of first n natural no. s = ${\left( {\dfrac{{{\text{n}}\,{\text{(n}}\,{\text{ + }}\,{\text{1)}}}}{{\text{2}}}} \right)^{\text{2}}}$
These formulae will come in handy in the future .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

