
The values of k for which the roots are real and equal of the following equation $k{x^2} - 2\sqrt 5 x + 4 = 0$ is $k = \dfrac{5}{4}$ .
(a) True
(b) False
Answer
593.4k+ views
Hint:For the real and equal roots we know that the discriminant is equal to $0$ or for the equation $a{x^2} + bx + c = 0$ the condition for real and equal is ${b^2} - 4ac = 0$ from this concept we can solve this question easily.
Complete step-by-step answer:
We know that the condition for real and equal roots Discriminant = $0$ .
If equation is $a{x^2} + bx + c = 0$ then Discriminant is = ${b^2} - 4ac$ ;
Now compare the both equation for getting the values of $a,b,c$ :
$k{x^2} - 2\sqrt 5 x + 4 = 0$ with $a{x^2} + bx + c = 0$ ;
By comparing we get
$a = k$ , $b = - 2\sqrt 5 $ , $c = 4$
Now Discriminant of required equation is
${b^2} - 4ac$ = ${\left( { - 2\sqrt 5 } \right)^2} - 4 \times k \times 4 = 0$
By solving we get
$20 - 16k = 0$ ,
Now by rearranging we get,
$k = \dfrac{{20}}{{16}}$
Dividing Numerator or denominator by $4$ we get ,
$k = \dfrac{5}{4}$
Hence the value given is correct.
So, the correct answer is “True”.
Note:If in case we have to find the value of $k$ for two real and unequal roots then we have to do that Discriminant $ > 0$ or ${b^2} - 4ac$$ > 0$ .If in case we have to find the value of $k$ for imaginary roots then we have to do that Discriminant $ < 0$ or ${b^2} - 4ac$$ < 0$.When the Discriminant is negative then we get the pair of complex equations .If one root is given $a + ib$ than other will be the $a - ib$ .
Complete step-by-step answer:
We know that the condition for real and equal roots Discriminant = $0$ .
If equation is $a{x^2} + bx + c = 0$ then Discriminant is = ${b^2} - 4ac$ ;
Now compare the both equation for getting the values of $a,b,c$ :
$k{x^2} - 2\sqrt 5 x + 4 = 0$ with $a{x^2} + bx + c = 0$ ;
By comparing we get
$a = k$ , $b = - 2\sqrt 5 $ , $c = 4$
Now Discriminant of required equation is
${b^2} - 4ac$ = ${\left( { - 2\sqrt 5 } \right)^2} - 4 \times k \times 4 = 0$
By solving we get
$20 - 16k = 0$ ,
Now by rearranging we get,
$k = \dfrac{{20}}{{16}}$
Dividing Numerator or denominator by $4$ we get ,
$k = \dfrac{5}{4}$
Hence the value given is correct.
So, the correct answer is “True”.
Note:If in case we have to find the value of $k$ for two real and unequal roots then we have to do that Discriminant $ > 0$ or ${b^2} - 4ac$$ > 0$ .If in case we have to find the value of $k$ for imaginary roots then we have to do that Discriminant $ < 0$ or ${b^2} - 4ac$$ < 0$.When the Discriminant is negative then we get the pair of complex equations .If one root is given $a + ib$ than other will be the $a - ib$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

