The values of k for which the roots are real and equal of the following equation $k{x^2} - 2\sqrt 5 x + 4 = 0$ is $k = \dfrac{5}{4}$ .
(a) True
(b) False
Answer
Verified
480k+ views
Hint:For the real and equal roots we know that the discriminant is equal to $0$ or for the equation $a{x^2} + bx + c = 0$ the condition for real and equal is ${b^2} - 4ac = 0$ from this concept we can solve this question easily.
Complete step-by-step answer:
We know that the condition for real and equal roots Discriminant = $0$ .
If equation is $a{x^2} + bx + c = 0$ then Discriminant is = ${b^2} - 4ac$ ;
Now compare the both equation for getting the values of $a,b,c$ :
$k{x^2} - 2\sqrt 5 x + 4 = 0$ with $a{x^2} + bx + c = 0$ ;
By comparing we get
$a = k$ , $b = - 2\sqrt 5 $ , $c = 4$
Now Discriminant of required equation is
${b^2} - 4ac$ = ${\left( { - 2\sqrt 5 } \right)^2} - 4 \times k \times 4 = 0$
By solving we get
$20 - 16k = 0$ ,
Now by rearranging we get,
$k = \dfrac{{20}}{{16}}$
Dividing Numerator or denominator by $4$ we get ,
$k = \dfrac{5}{4}$
Hence the value given is correct.
So, the correct answer is “True”.
Note:If in case we have to find the value of $k$ for two real and unequal roots then we have to do that Discriminant $ > 0$ or ${b^2} - 4ac$$ > 0$ .If in case we have to find the value of $k$ for imaginary roots then we have to do that Discriminant $ < 0$ or ${b^2} - 4ac$$ < 0$.When the Discriminant is negative then we get the pair of complex equations .If one root is given $a + ib$ than other will be the $a - ib$ .
Complete step-by-step answer:
We know that the condition for real and equal roots Discriminant = $0$ .
If equation is $a{x^2} + bx + c = 0$ then Discriminant is = ${b^2} - 4ac$ ;
Now compare the both equation for getting the values of $a,b,c$ :
$k{x^2} - 2\sqrt 5 x + 4 = 0$ with $a{x^2} + bx + c = 0$ ;
By comparing we get
$a = k$ , $b = - 2\sqrt 5 $ , $c = 4$
Now Discriminant of required equation is
${b^2} - 4ac$ = ${\left( { - 2\sqrt 5 } \right)^2} - 4 \times k \times 4 = 0$
By solving we get
$20 - 16k = 0$ ,
Now by rearranging we get,
$k = \dfrac{{20}}{{16}}$
Dividing Numerator or denominator by $4$ we get ,
$k = \dfrac{5}{4}$
Hence the value given is correct.
So, the correct answer is “True”.
Note:If in case we have to find the value of $k$ for two real and unequal roots then we have to do that Discriminant $ > 0$ or ${b^2} - 4ac$$ > 0$ .If in case we have to find the value of $k$ for imaginary roots then we have to do that Discriminant $ < 0$ or ${b^2} - 4ac$$ < 0$.When the Discriminant is negative then we get the pair of complex equations .If one root is given $a + ib$ than other will be the $a - ib$ .
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE