
The value of x+y+z=15, if a,x,y,z,b are in A.P, while the value of $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P. Find $a\times b$.
Answer
604.5k+ views
Hint: For the above question we will use the concept that if ‘a’ and ‘b’ are two terms of an A.P and there are ‘n’ arithmetic means say ${{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}}$ between them then their sum is equal to n time the average value of ‘a’ and ‘b’.
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
Also, we know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......$ are in H.P in $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....$ must be in A.P, we will also use this concept.
Complete step-by-step solution -
We have been given that if \[x+y+z=15\], if $a,x,y,z,b$ are in A.P, while the value of $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if a and b are in A.P and there are n arithmetic mean say ${{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}}$ between them then,
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}........... +{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
We have 3 arithmetic mean between a and b which are $x,y,z$.
$\begin{align}
& \Rightarrow x+y+z=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow 15=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{15\times 2}{3}=a+b \\
& \Rightarrow 10=a+b \\
& \Rightarrow a+b=10...........\left( 1 \right) \\
\end{align}$
We have $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}$ are in H.P then their reciprocal i.e., $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....\dfrac{1}{{{a}_{n}}}$ must be in A.P.
$\Rightarrow \dfrac{1}{a},\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z},\dfrac{1}{b}$ are in A.P.
We know that the sum of ‘n’ arithmetic mean between a and b of an A.P is given by,
$\begin{align}
& {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\left( \dfrac{\dfrac{1}{a}+\dfrac{1}{b}}{2} \right) \\
& \Rightarrow \dfrac{5}{3}=3\left( \dfrac{a+b}{2ab} \right) \\
& \Rightarrow \dfrac{5\times 2}{3\times 3}=\dfrac{a+b}{ab} \\
\end{align}$
Using equation (1) we have $\left( a+b \right)=10$.
$\begin{align}
& \Rightarrow \dfrac{10}{9}=\dfrac{10}{ab} \\
& \Rightarrow ab=9 \\
\end{align}$
Therefore, the required value of $\left( a\times b \right)$is equal to 9.
Note: Remember the point that the reciprocal of the term of H.P are in A.P. If we have $x,y,z$ are in H.P then $\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z}$ must be in A.P. Also, remember that Arithmetic Progression is a sequence of numbers that is constant and it is denoted by (A.P) in short form whereas H.P is Harmonic Progression.
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
Also, we know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......$ are in H.P in $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....$ must be in A.P, we will also use this concept.
Complete step-by-step solution -
We have been given that if \[x+y+z=15\], if $a,x,y,z,b$ are in A.P, while the value of $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if a and b are in A.P and there are n arithmetic mean say ${{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}}$ between them then,
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}........... +{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
We have 3 arithmetic mean between a and b which are $x,y,z$.
$\begin{align}
& \Rightarrow x+y+z=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow 15=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{15\times 2}{3}=a+b \\
& \Rightarrow 10=a+b \\
& \Rightarrow a+b=10...........\left( 1 \right) \\
\end{align}$
We have $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}$ are in H.P then their reciprocal i.e., $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....\dfrac{1}{{{a}_{n}}}$ must be in A.P.
$\Rightarrow \dfrac{1}{a},\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z},\dfrac{1}{b}$ are in A.P.
We know that the sum of ‘n’ arithmetic mean between a and b of an A.P is given by,
$\begin{align}
& {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\left( \dfrac{\dfrac{1}{a}+\dfrac{1}{b}}{2} \right) \\
& \Rightarrow \dfrac{5}{3}=3\left( \dfrac{a+b}{2ab} \right) \\
& \Rightarrow \dfrac{5\times 2}{3\times 3}=\dfrac{a+b}{ab} \\
\end{align}$
Using equation (1) we have $\left( a+b \right)=10$.
$\begin{align}
& \Rightarrow \dfrac{10}{9}=\dfrac{10}{ab} \\
& \Rightarrow ab=9 \\
\end{align}$
Therefore, the required value of $\left( a\times b \right)$is equal to 9.
Note: Remember the point that the reciprocal of the term of H.P are in A.P. If we have $x,y,z$ are in H.P then $\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z}$ must be in A.P. Also, remember that Arithmetic Progression is a sequence of numbers that is constant and it is denoted by (A.P) in short form whereas H.P is Harmonic Progression.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

