
The value of x+y+z=15, if a,x,y,z,b are in A.P, while the value of $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P. Find $a\times b$.
Answer
589.2k+ views
Hint: For the above question we will use the concept that if ‘a’ and ‘b’ are two terms of an A.P and there are ‘n’ arithmetic means say ${{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}}$ between them then their sum is equal to n time the average value of ‘a’ and ‘b’.
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
Also, we know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......$ are in H.P in $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....$ must be in A.P, we will also use this concept.
Complete step-by-step solution -
We have been given that if \[x+y+z=15\], if $a,x,y,z,b$ are in A.P, while the value of $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if a and b are in A.P and there are n arithmetic mean say ${{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}}$ between them then,
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}........... +{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
We have 3 arithmetic mean between a and b which are $x,y,z$.
$\begin{align}
& \Rightarrow x+y+z=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow 15=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{15\times 2}{3}=a+b \\
& \Rightarrow 10=a+b \\
& \Rightarrow a+b=10...........\left( 1 \right) \\
\end{align}$
We have $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}$ are in H.P then their reciprocal i.e., $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....\dfrac{1}{{{a}_{n}}}$ must be in A.P.
$\Rightarrow \dfrac{1}{a},\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z},\dfrac{1}{b}$ are in A.P.
We know that the sum of ‘n’ arithmetic mean between a and b of an A.P is given by,
$\begin{align}
& {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\left( \dfrac{\dfrac{1}{a}+\dfrac{1}{b}}{2} \right) \\
& \Rightarrow \dfrac{5}{3}=3\left( \dfrac{a+b}{2ab} \right) \\
& \Rightarrow \dfrac{5\times 2}{3\times 3}=\dfrac{a+b}{ab} \\
\end{align}$
Using equation (1) we have $\left( a+b \right)=10$.
$\begin{align}
& \Rightarrow \dfrac{10}{9}=\dfrac{10}{ab} \\
& \Rightarrow ab=9 \\
\end{align}$
Therefore, the required value of $\left( a\times b \right)$is equal to 9.
Note: Remember the point that the reciprocal of the term of H.P are in A.P. If we have $x,y,z$ are in H.P then $\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z}$ must be in A.P. Also, remember that Arithmetic Progression is a sequence of numbers that is constant and it is denoted by (A.P) in short form whereas H.P is Harmonic Progression.
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
Also, we know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......$ are in H.P in $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....$ must be in A.P, we will also use this concept.
Complete step-by-step solution -
We have been given that if \[x+y+z=15\], if $a,x,y,z,b$ are in A.P, while the value of $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if a and b are in A.P and there are n arithmetic mean say ${{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}}$ between them then,
$\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}........... +{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)$
We have 3 arithmetic mean between a and b which are $x,y,z$.
$\begin{align}
& \Rightarrow x+y+z=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow 15=3\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{15\times 2}{3}=a+b \\
& \Rightarrow 10=a+b \\
& \Rightarrow a+b=10...........\left( 1 \right) \\
\end{align}$
We have $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3}$ if $a,x,y,z,b$ are in H.P.
We know that if ${{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}$ are in H.P then their reciprocal i.e., $\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....\dfrac{1}{{{a}_{n}}}$ must be in A.P.
$\Rightarrow \dfrac{1}{a},\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z},\dfrac{1}{b}$ are in A.P.
We know that the sum of ‘n’ arithmetic mean between a and b of an A.P is given by,
$\begin{align}
& {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right) \\
& \Rightarrow \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\left( \dfrac{\dfrac{1}{a}+\dfrac{1}{b}}{2} \right) \\
& \Rightarrow \dfrac{5}{3}=3\left( \dfrac{a+b}{2ab} \right) \\
& \Rightarrow \dfrac{5\times 2}{3\times 3}=\dfrac{a+b}{ab} \\
\end{align}$
Using equation (1) we have $\left( a+b \right)=10$.
$\begin{align}
& \Rightarrow \dfrac{10}{9}=\dfrac{10}{ab} \\
& \Rightarrow ab=9 \\
\end{align}$
Therefore, the required value of $\left( a\times b \right)$is equal to 9.
Note: Remember the point that the reciprocal of the term of H.P are in A.P. If we have $x,y,z$ are in H.P then $\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z}$ must be in A.P. Also, remember that Arithmetic Progression is a sequence of numbers that is constant and it is denoted by (A.P) in short form whereas H.P is Harmonic Progression.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

