Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The value of $\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$ is –
(a) $0$
(b) $1$
(c) $\dfrac{1}{2}$
(d) Non existent

Answer
VerifiedVerified
515.7k+ views
Hint: The given expression is a combination of integration, differentiation and limit. So, first solve the innermost function and then proceed outwards. Here first solve the integration part, then apply the derivative and at last apply the limit.

Complete step-by-step answer:
 Given,
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$
First we will solve the integration part.
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{{{r}^{2}}-1}dr\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( {{r}^{2}} \right)}{{{r}^{2}}-1}dr\ldots \left( i \right)\]
Let,
\[u={{r}^{2}}-1\Rightarrow {{r}^{2}}=u+1\]
\[\Rightarrow \dfrac{du}{dr}=2r\]
\[\Rightarrow dr=\dfrac{1}{2r}du\]
Substituting these values in equation (i), we get
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( u+1 \right)}{u}\left( \dfrac{1}{2r}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}\left( \dfrac{1}{2}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}du\]
On expanding, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( \dfrac{u}{u}+\dfrac{1}{u} \right)du\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( 1+\dfrac{1}{u} \right)du\]
This can be also written as,
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,1du+\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{1}{u}du \right]\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}du=\ln u$ , so we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ u+\ln u \right]_{\sqrt{3}}^{\sqrt{x}}\]
Substituting back the values of ‘u’ and ‘du’, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( {{r}^{2}}-1 \right)+\ln \left( {{r}^{2}}-1 \right) \right]_{\sqrt{3}}^{\sqrt{x}}\]
Applying the values, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right) \right)-\left( \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( \left( 3-1 \right)+\ln \left( 3-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right]\]
Now we will apply the derivative, we get
\[\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{d}{dx}\left\{ \dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-\dfrac{d}{dx}\left[ 2+\ln 2 \right] \right\}\]
But differentiation of constant is a constant, so
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-0 \right\}\]
This can be written as,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ x \right]-\dfrac{d}{dx}\left[ 1 \right]+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Solving we get,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1-0+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Differentiation of $\ln y=\dfrac{1}{y}.\dfrac{dy}{dx}$ , so we get
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\dfrac{d}{dx}\left[ x-1 \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\left( 1 \right) \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{\left( x-1 \right)+1}{x-1} \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
Now we will apply limit, we get
\[\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\mathop{\overset{\sqrt{x}}{\mathop{\int }}\,}}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{\dfrac{\left( x-1 \right)}{x}} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{x}} \right\}\]
Now we will apply the limit, we get
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{\infty }} \right\}\]
We know, $\dfrac{1}{\infty }\approx 0$ ,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-0} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\]
Hence, the correct option for the given question is option (c).
Answer is Option (c)

Note: In the solution the following equation,
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr\]
It can be solved by applying a partial fraction decomposition method too. The answer won’t differ.