
The value of $\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$ is –
(a) $0$
(b) $1$
(c) $\dfrac{1}{2}$
(d) Non existent
Answer
611.1k+ views
Hint: The given expression is a combination of integration, differentiation and limit. So, first solve the innermost function and then proceed outwards. Here first solve the integration part, then apply the derivative and at last apply the limit.
Complete step-by-step answer:
Given,
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$
First we will solve the integration part.
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{{{r}^{2}}-1}dr\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( {{r}^{2}} \right)}{{{r}^{2}}-1}dr\ldots \left( i \right)\]
Let,
\[u={{r}^{2}}-1\Rightarrow {{r}^{2}}=u+1\]
\[\Rightarrow \dfrac{du}{dr}=2r\]
\[\Rightarrow dr=\dfrac{1}{2r}du\]
Substituting these values in equation (i), we get
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( u+1 \right)}{u}\left( \dfrac{1}{2r}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}\left( \dfrac{1}{2}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}du\]
On expanding, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( \dfrac{u}{u}+\dfrac{1}{u} \right)du\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( 1+\dfrac{1}{u} \right)du\]
This can be also written as,
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,1du+\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{1}{u}du \right]\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}du=\ln u$ , so we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ u+\ln u \right]_{\sqrt{3}}^{\sqrt{x}}\]
Substituting back the values of ‘u’ and ‘du’, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( {{r}^{2}}-1 \right)+\ln \left( {{r}^{2}}-1 \right) \right]_{\sqrt{3}}^{\sqrt{x}}\]
Applying the values, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right) \right)-\left( \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( \left( 3-1 \right)+\ln \left( 3-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right]\]
Now we will apply the derivative, we get
\[\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{d}{dx}\left\{ \dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-\dfrac{d}{dx}\left[ 2+\ln 2 \right] \right\}\]
But differentiation of constant is a constant, so
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-0 \right\}\]
This can be written as,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ x \right]-\dfrac{d}{dx}\left[ 1 \right]+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Solving we get,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1-0+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Differentiation of $\ln y=\dfrac{1}{y}.\dfrac{dy}{dx}$ , so we get
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\dfrac{d}{dx}\left[ x-1 \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\left( 1 \right) \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{\left( x-1 \right)+1}{x-1} \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
Now we will apply limit, we get
\[\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\mathop{\overset{\sqrt{x}}{\mathop{\int }}\,}}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{\dfrac{\left( x-1 \right)}{x}} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{x}} \right\}\]
Now we will apply the limit, we get
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{\infty }} \right\}\]
We know, $\dfrac{1}{\infty }\approx 0$ ,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-0} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\]
Hence, the correct option for the given question is option (c).
Answer is Option (c)
Note: In the solution the following equation,
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr\]
It can be solved by applying a partial fraction decomposition method too. The answer won’t differ.
Complete step-by-step answer:
Given,
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$
First we will solve the integration part.
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{{{r}^{2}}-1}dr\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( {{r}^{2}} \right)}{{{r}^{2}}-1}dr\ldots \left( i \right)\]
Let,
\[u={{r}^{2}}-1\Rightarrow {{r}^{2}}=u+1\]
\[\Rightarrow \dfrac{du}{dr}=2r\]
\[\Rightarrow dr=\dfrac{1}{2r}du\]
Substituting these values in equation (i), we get
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( u+1 \right)}{u}\left( \dfrac{1}{2r}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}\left( \dfrac{1}{2}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}du\]
On expanding, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( \dfrac{u}{u}+\dfrac{1}{u} \right)du\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( 1+\dfrac{1}{u} \right)du\]
This can be also written as,
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,1du+\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{1}{u}du \right]\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}du=\ln u$ , so we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ u+\ln u \right]_{\sqrt{3}}^{\sqrt{x}}\]
Substituting back the values of ‘u’ and ‘du’, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( {{r}^{2}}-1 \right)+\ln \left( {{r}^{2}}-1 \right) \right]_{\sqrt{3}}^{\sqrt{x}}\]
Applying the values, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right) \right)-\left( \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( \left( 3-1 \right)+\ln \left( 3-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right]\]
Now we will apply the derivative, we get
\[\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{d}{dx}\left\{ \dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-\dfrac{d}{dx}\left[ 2+\ln 2 \right] \right\}\]
But differentiation of constant is a constant, so
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-0 \right\}\]
This can be written as,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ x \right]-\dfrac{d}{dx}\left[ 1 \right]+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Solving we get,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1-0+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Differentiation of $\ln y=\dfrac{1}{y}.\dfrac{dy}{dx}$ , so we get
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\dfrac{d}{dx}\left[ x-1 \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\left( 1 \right) \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{\left( x-1 \right)+1}{x-1} \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
Now we will apply limit, we get
\[\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\mathop{\overset{\sqrt{x}}{\mathop{\int }}\,}}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{\dfrac{\left( x-1 \right)}{x}} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{x}} \right\}\]
Now we will apply the limit, we get
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{\infty }} \right\}\]
We know, $\dfrac{1}{\infty }\approx 0$ ,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-0} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\]
Hence, the correct option for the given question is option (c).
Answer is Option (c)
Note: In the solution the following equation,
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr\]
It can be solved by applying a partial fraction decomposition method too. The answer won’t differ.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

