
The value of $\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$ is –
(a) $0$
(b) $1$
(c) $\dfrac{1}{2}$
(d) Non existent
Answer
515.7k+ views
Hint: The given expression is a combination of integration, differentiation and limit. So, first solve the innermost function and then proceed outwards. Here first solve the integration part, then apply the derivative and at last apply the limit.
Complete step-by-step answer:
Given,
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$
First we will solve the integration part.
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{{{r}^{2}}-1}dr\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( {{r}^{2}} \right)}{{{r}^{2}}-1}dr\ldots \left( i \right)\]
Let,
\[u={{r}^{2}}-1\Rightarrow {{r}^{2}}=u+1\]
\[\Rightarrow \dfrac{du}{dr}=2r\]
\[\Rightarrow dr=\dfrac{1}{2r}du\]
Substituting these values in equation (i), we get
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( u+1 \right)}{u}\left( \dfrac{1}{2r}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}\left( \dfrac{1}{2}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}du\]
On expanding, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( \dfrac{u}{u}+\dfrac{1}{u} \right)du\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( 1+\dfrac{1}{u} \right)du\]
This can be also written as,
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,1du+\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{1}{u}du \right]\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}du=\ln u$ , so we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ u+\ln u \right]_{\sqrt{3}}^{\sqrt{x}}\]
Substituting back the values of ‘u’ and ‘du’, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( {{r}^{2}}-1 \right)+\ln \left( {{r}^{2}}-1 \right) \right]_{\sqrt{3}}^{\sqrt{x}}\]
Applying the values, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right) \right)-\left( \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( \left( 3-1 \right)+\ln \left( 3-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right]\]
Now we will apply the derivative, we get
\[\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{d}{dx}\left\{ \dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-\dfrac{d}{dx}\left[ 2+\ln 2 \right] \right\}\]
But differentiation of constant is a constant, so
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-0 \right\}\]
This can be written as,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ x \right]-\dfrac{d}{dx}\left[ 1 \right]+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Solving we get,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1-0+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Differentiation of $\ln y=\dfrac{1}{y}.\dfrac{dy}{dx}$ , so we get
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\dfrac{d}{dx}\left[ x-1 \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\left( 1 \right) \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{\left( x-1 \right)+1}{x-1} \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
Now we will apply limit, we get
\[\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\mathop{\overset{\sqrt{x}}{\mathop{\int }}\,}}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{\dfrac{\left( x-1 \right)}{x}} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{x}} \right\}\]
Now we will apply the limit, we get
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{\infty }} \right\}\]
We know, $\dfrac{1}{\infty }\approx 0$ ,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-0} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\]
Hence, the correct option for the given question is option (c).
Answer is Option (c)
Note: In the solution the following equation,
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr\]
It can be solved by applying a partial fraction decomposition method too. The answer won’t differ.
Complete step-by-step answer:
Given,
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)$
First we will solve the integration part.
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{{{r}^{2}}-1}dr\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( {{r}^{2}} \right)}{{{r}^{2}}-1}dr\ldots \left( i \right)\]
Let,
\[u={{r}^{2}}-1\Rightarrow {{r}^{2}}=u+1\]
\[\Rightarrow \dfrac{du}{dr}=2r\]
\[\Rightarrow dr=\dfrac{1}{2r}du\]
Substituting these values in equation (i), we get
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{r\left( u+1 \right)}{u}\left( \dfrac{1}{2r}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}\left( \dfrac{1}{2}du \right)\]
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{\left( u+1 \right)}{u}du\]
On expanding, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( \dfrac{u}{u}+\dfrac{1}{u} \right)du\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\left( 1+\dfrac{1}{u} \right)du\]
This can be also written as,
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,1du+\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{1}{u}du \right]\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}du=\ln u$ , so we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ u+\ln u \right]_{\sqrt{3}}^{\sqrt{x}}\]
Substituting back the values of ‘u’ and ‘du’, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( {{r}^{2}}-1 \right)+\ln \left( {{r}^{2}}-1 \right) \right]_{\sqrt{3}}^{\sqrt{x}}\]
Applying the values, we get
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{x} \right)}^{2}}-1 \right) \right)-\left( \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right)+\ln \left( {{\left( \sqrt{3} \right)}^{2}}-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( \left( 3-1 \right)+\ln \left( 3-1 \right) \right) \right]\]
\[\Rightarrow \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr=\dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right]\]
Now we will apply the derivative, we get
\[\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{d}{dx}\left\{ \dfrac{1}{2}\left[ \left( \left( x-1 \right)+\ln \left( x-1 \right) \right)-\left( 2+\ln 2 \right) \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-\dfrac{d}{dx}\left[ 2+\ln 2 \right] \right\}\]
But differentiation of constant is a constant, so
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ \left( x-1 \right)+\ln \left( x-1 \right) \right]-0 \right\}\]
This can be written as,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{d}{dx}\left[ x \right]-\dfrac{d}{dx}\left[ 1 \right]+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Solving we get,
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1-0+\dfrac{d}{dx}\left[ \ln \left( x-1 \right) \right] \right\}\]
Differentiation of $\ln y=\dfrac{1}{y}.\dfrac{dy}{dx}$ , so we get
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\dfrac{d}{dx}\left[ x-1 \right] \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ 1+\dfrac{1}{x-1}.\left( 1 \right) \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{\left( x-1 \right)+1}{x-1} \right\}\]
\[\Rightarrow \dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
Now we will apply limit, we get
\[\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\mathop{\overset{\sqrt{x}}{\mathop{\int }}\,}}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{x}{x-1} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{\dfrac{\left( x-1 \right)}{x}} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{x}} \right\}\]
Now we will apply the limit, we get
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-\dfrac{1}{\infty }} \right\}\]
We know, $\dfrac{1}{\infty }\approx 0$ ,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\left\{ \dfrac{1}{1-0} \right\}\]
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{d}{dx}\left( \underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr \right)=\dfrac{1}{2}\]
Hence, the correct option for the given question is option (c).
Answer is Option (c)
Note: In the solution the following equation,
\[\underset{\sqrt{3}}{\overset{\sqrt{x}}{\mathop \int }}\,\dfrac{{{r}^{3}}}{\left( r+1 \right)\left( r-1 \right)}dr\]
It can be solved by applying a partial fraction decomposition method too. The answer won’t differ.
Recently Updated Pages
Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
