
The value of the trigonometric function $\tan \left( {{\cot }^{-1}}x \right)$ is equal to:
\[\begin{align}
& A.\dfrac{\pi }{2}-x \\
& B.\cot \left( {{\tan }^{-1}}x \right) \\
& C.\tan x \\
& D.\dfrac{1}{x} \\
\end{align}\]
Answer
585.9k+ views
Hint: The above question is based on the properties of Inverse circular function. Some properties which are used in our question is shown below:
\[\begin{align}
& \left( i \right)y=\tan \left( {{\tan }^{-1}}x \right)=x,x\in R,y\in R,\text{ y is a periodic} \\
& \left( ii \right)y=\cot \left( {{\cot }^{-1}}x \right)=x,x\in R,y\in R,\text{ y is a periodic} \\
& \left( iii \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x};x\text{ }>\text{ 0} \\
& \Rightarrow \pi +{{\tan }^{-1}}\dfrac{1}{x};x\text{ }<\text{ 0} \\
& \left( iv \right){{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2};x\in R \\
\end{align}\]
These are basic identities or properties of Inverse trigonometric function. We have to apply them to our question. There may be more than one solution.
Complete step by step answer:
Let's move to our problem, we have $\tan \left( {{\cot }^{-1}}x \right)$ expression.
Let’s take it as \[P=\tan \left( {{\cot }^{-1}}x \right)\cdots \cdots \cdots \cdots \left( i \right)\]
Now, by property \[{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2};x\in R\]
We have \[{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x\]
Now, put this value in (i).
Hence, we have \[P=\tan \left( \dfrac{\pi }{2}-{{\tan }^{-1}}x \right)\]
We know that \[\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \]
Hence, \[P=\cot \left( {{\tan }^{-1}}x \right)\cdots \cdots \cdots \cdots \left( ii \right)\]
So, this is one of our answer according to options given in the question i.e. option B.
Now, by property
\[\begin{align}
& {{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x};x\text{ }>\text{ 0} \\
& \Rightarrow \pi +{{\tan }^{-1}}\dfrac{1}{x};x\text{ }<\text{ 0} \\
\end{align}\]
We have from (i).
\[\begin{align}
& P=\tan \left( {{\cot }^{-1}}x \right) \\
& P=\tan \left( {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right)\left( \text{when x0} \right) \\
\end{align}\]
Now, we know, property \[\tan \left( {{\tan }^{-1}}x \right)=x,x\in R\]
Hence, we get
\[\begin{align}
& P=\tan \left( {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right) \\
& P=\left( \dfrac{1}{x} \right) \\
\end{align}\]
Now, we have one other possibility when x<0
\[\begin{align}
& \therefore P=\tan \left( {{\cot }^{-1}}x \right) \\
& P=\tan \left( \pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right) \\
\end{align}\]
Now, we know \[\tan \left( \pi +\theta \right)=\tan \theta \]
Hence, \[P=\tan \left( \pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right)=\left( \dfrac{1}{x} \right)\]
Hence, in both cases i.e. x>0 and x<0
We get \[P=\dfrac{1}{x}\]
So, this is our second answer i.e. option D.
Hence, overall we have options B and D as our final answer.
Note: Inverse trigonometric function becomes quite easy to solve, once we grab the formula and properties. Students can make mistake in understanding the difference between \[\tan \left( {{\tan }^{-1}}x \right)\text{ and }{{\tan }^{-1}}\left( \tan x \right)\]. Both terms are looking similar but they are quite different in their formula like:
\[\tan \left( {{\tan }^{-1}}x \right)=x,x\in R\]
\[{{\tan }^{-1}}\left( \tan x \right)=\left\{ \begin{align}
& x+\pi ,\dfrac{-3\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{-\pi }{2} \\
& x,\dfrac{-\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{\pi }{2} \\
& x-\pi ,\dfrac{\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{3\pi }{2} \\
& x-2\pi ,\dfrac{3\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{5\pi }{2} \\
& x-3\pi ,\dfrac{5\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{7\pi }{2} \\
\end{align} \right.\]
\[\begin{align}
& \left( i \right)y=\tan \left( {{\tan }^{-1}}x \right)=x,x\in R,y\in R,\text{ y is a periodic} \\
& \left( ii \right)y=\cot \left( {{\cot }^{-1}}x \right)=x,x\in R,y\in R,\text{ y is a periodic} \\
& \left( iii \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x};x\text{ }>\text{ 0} \\
& \Rightarrow \pi +{{\tan }^{-1}}\dfrac{1}{x};x\text{ }<\text{ 0} \\
& \left( iv \right){{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2};x\in R \\
\end{align}\]
These are basic identities or properties of Inverse trigonometric function. We have to apply them to our question. There may be more than one solution.
Complete step by step answer:
Let's move to our problem, we have $\tan \left( {{\cot }^{-1}}x \right)$ expression.
Let’s take it as \[P=\tan \left( {{\cot }^{-1}}x \right)\cdots \cdots \cdots \cdots \left( i \right)\]
Now, by property \[{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2};x\in R\]
We have \[{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x\]
Now, put this value in (i).
Hence, we have \[P=\tan \left( \dfrac{\pi }{2}-{{\tan }^{-1}}x \right)\]
We know that \[\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \]
Hence, \[P=\cot \left( {{\tan }^{-1}}x \right)\cdots \cdots \cdots \cdots \left( ii \right)\]
So, this is one of our answer according to options given in the question i.e. option B.
Now, by property
\[\begin{align}
& {{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x};x\text{ }>\text{ 0} \\
& \Rightarrow \pi +{{\tan }^{-1}}\dfrac{1}{x};x\text{ }<\text{ 0} \\
\end{align}\]
We have from (i).
\[\begin{align}
& P=\tan \left( {{\cot }^{-1}}x \right) \\
& P=\tan \left( {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right)\left( \text{when x0} \right) \\
\end{align}\]
Now, we know, property \[\tan \left( {{\tan }^{-1}}x \right)=x,x\in R\]
Hence, we get
\[\begin{align}
& P=\tan \left( {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right) \\
& P=\left( \dfrac{1}{x} \right) \\
\end{align}\]
Now, we have one other possibility when x<0
\[\begin{align}
& \therefore P=\tan \left( {{\cot }^{-1}}x \right) \\
& P=\tan \left( \pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right) \\
\end{align}\]
Now, we know \[\tan \left( \pi +\theta \right)=\tan \theta \]
Hence, \[P=\tan \left( \pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right)=\left( \dfrac{1}{x} \right)\]
Hence, in both cases i.e. x>0 and x<0
We get \[P=\dfrac{1}{x}\]
So, this is our second answer i.e. option D.
Hence, overall we have options B and D as our final answer.
Note: Inverse trigonometric function becomes quite easy to solve, once we grab the formula and properties. Students can make mistake in understanding the difference between \[\tan \left( {{\tan }^{-1}}x \right)\text{ and }{{\tan }^{-1}}\left( \tan x \right)\]. Both terms are looking similar but they are quite different in their formula like:
\[\tan \left( {{\tan }^{-1}}x \right)=x,x\in R\]
\[{{\tan }^{-1}}\left( \tan x \right)=\left\{ \begin{align}
& x+\pi ,\dfrac{-3\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{-\pi }{2} \\
& x,\dfrac{-\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{\pi }{2} \\
& x-\pi ,\dfrac{\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{3\pi }{2} \\
& x-2\pi ,\dfrac{3\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{5\pi }{2} \\
& x-3\pi ,\dfrac{5\pi }{2}\text{ }<\text{ }x\text{ }<\text{ }\dfrac{7\pi }{2} \\
\end{align} \right.\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

