
The value of the following expression $\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=$
A. ${{\sin }^{2}}A$
B. ${{\cos }^{2}}A$
C. $\sin A$
D. 1
Answer
608.1k+ views
- Hint: We will use the formulas of trigonometry that are used specially for angles. The ones that are used here are $\cos \left( 90{}^\circ -\theta \right)=\sin \theta ,\sin \left( 90{}^\circ -\theta \right)=\cos \theta $ and $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ as the trigonometric ratios. With the help of these formulas we will make the given trigonometric expression into a simpler form.
Complete step-by-step solution -
To solve the given question, let us consider the expression given in the question as, $\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}\ldots \ldots \ldots \left( i \right)$
Here, the degree A, can be any angle. We will use the formula $\cos \left( 90{}^\circ -\theta \right)=\sin \theta $ and substitute it directly into the equation (i). Therefore, we get
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin \left( A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}$
Now we will use the formula of trigonometry which is given by $\sin \left( 90{}^\circ -\theta \right)=\cos \theta $ in the above equation. Thus, we get a new equation which is written as
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin \left( A \right)\cos \left( A \right)}{\tan \left( 90{}^\circ -A \right)}$ where A is any angle.
Similarly, as we know that in trigonometry the value of $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta $ is any angle. So, we will use it in the new equation. Thus we will get
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin \left( A \right)\cos \left( A \right)}{\cot \left( A \right)}...(ii)$
Now, we will use the value of tan A in terms of sin and cos. We know that$\cot A=\dfrac{\cos A}{\sin A}$, so we will substitute this value in equation (ii) and we get,
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin A\cos A}{\dfrac{\cos A}{\sin A}}\ldots \ldots \ldots \left( iii \right)$
Now, we will use the form $\dfrac{a}{\dfrac{b}{c}}=\dfrac{ac}{b}$ in equation (iii) and then we get,
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin A\cos A\sin A}{\cos A}$
We will cancel the common term, $\cos A$ from both the numerator and the denominator. So, we get,
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}={{\sin }^{2}}A$
Hence, the correct option is option A.
Note: We should remember that can we write $\sin \theta =\cos \left( 90{}^\circ -\theta \right)$ only when the angle is given to us as $90{}^\circ $ in which we are subtracting $\theta $ . But if we come across $\cos \left( 180{}^\circ -\theta \right)$, then it should not imply $\sin \theta $. It will be incorrect. Also, notice that we will convert $\tan \theta $ into $\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta $ into$\dfrac{\cos \theta }{\sin \theta }$. Since, $\sin \theta $ and $\cos \theta $ are known to be simple terms, it is better to convert tan or cot in terms of $\sin \theta $ and $\cos \theta $. If in case we get different trigonometric terms then we will use different formulas for that. The formulas are given below by which the question can be formed.
$\begin{align}
& \sin \left( 90{}^\circ -A \right)=\cos A \\
& \cos \left( 90{}^\circ -A \right)=\sin A \\
& \tan \left( 90{}^\circ -A \right)=\cot A \\
& \cot \left( 90{}^\circ -A \right)=\tan A \\
& \sec \left( 90{}^\circ -A \right)=\operatorname{cosec}A \\
& \operatorname{cosec}A\left( 90{}^\circ -A \right)=\sec A \\
\end{align}$
Complete step-by-step solution -
To solve the given question, let us consider the expression given in the question as, $\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}\ldots \ldots \ldots \left( i \right)$
Here, the degree A, can be any angle. We will use the formula $\cos \left( 90{}^\circ -\theta \right)=\sin \theta $ and substitute it directly into the equation (i). Therefore, we get
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin \left( A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}$
Now we will use the formula of trigonometry which is given by $\sin \left( 90{}^\circ -\theta \right)=\cos \theta $ in the above equation. Thus, we get a new equation which is written as
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin \left( A \right)\cos \left( A \right)}{\tan \left( 90{}^\circ -A \right)}$ where A is any angle.
Similarly, as we know that in trigonometry the value of $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta $ is any angle. So, we will use it in the new equation. Thus we will get
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin \left( A \right)\cos \left( A \right)}{\cot \left( A \right)}...(ii)$
Now, we will use the value of tan A in terms of sin and cos. We know that$\cot A=\dfrac{\cos A}{\sin A}$, so we will substitute this value in equation (ii) and we get,
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin A\cos A}{\dfrac{\cos A}{\sin A}}\ldots \ldots \ldots \left( iii \right)$
Now, we will use the form $\dfrac{a}{\dfrac{b}{c}}=\dfrac{ac}{b}$ in equation (iii) and then we get,
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}=\dfrac{\sin A\cos A\sin A}{\cos A}$
We will cancel the common term, $\cos A$ from both the numerator and the denominator. So, we get,
$\dfrac{\cos \left( 90{}^\circ -A \right)\sin \left( 90{}^\circ -A \right)}{\tan \left( 90{}^\circ -A \right)}={{\sin }^{2}}A$
Hence, the correct option is option A.
Note: We should remember that can we write $\sin \theta =\cos \left( 90{}^\circ -\theta \right)$ only when the angle is given to us as $90{}^\circ $ in which we are subtracting $\theta $ . But if we come across $\cos \left( 180{}^\circ -\theta \right)$, then it should not imply $\sin \theta $. It will be incorrect. Also, notice that we will convert $\tan \theta $ into $\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta $ into$\dfrac{\cos \theta }{\sin \theta }$. Since, $\sin \theta $ and $\cos \theta $ are known to be simple terms, it is better to convert tan or cot in terms of $\sin \theta $ and $\cos \theta $. If in case we get different trigonometric terms then we will use different formulas for that. The formulas are given below by which the question can be formed.
$\begin{align}
& \sin \left( 90{}^\circ -A \right)=\cos A \\
& \cos \left( 90{}^\circ -A \right)=\sin A \\
& \tan \left( 90{}^\circ -A \right)=\cot A \\
& \cot \left( 90{}^\circ -A \right)=\tan A \\
& \sec \left( 90{}^\circ -A \right)=\operatorname{cosec}A \\
& \operatorname{cosec}A\left( 90{}^\circ -A \right)=\sec A \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

