
The value of the expression given as \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}}\]
Answer
572.4k+ views
Hint: To solve this question we will try to resolve the given expression by using log property. First we will use $\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a$ to reduce the power term having $\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}$ as the power, then we will use the log property $m{{\log }_{n}}=\log {{n}^{m}}$ for clearing any remaining powers of expression. Then, finally we will use ${{a}^{{{\log }_{a}}b}}=b$ to get our result.
Complete step-by-step solution:
We know that, \[\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a\]
We have our expression as \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}}\]
Using the property of log stated above in our expression by using $b={{\log }_{2}}9\text{ and a}=2$ we get:
\[\begin{align}
& {{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}} \\
& {{\left( {{\log }_{2}}9 \right)}^{lo{{g}_{{{\log }_{2}}9}}2}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}} \\
\end{align}\]
Now, changing $\sqrt{7}$ to ${{\left( 7 \right)}^{\dfrac{1}{2}}}$ and using log identity \[\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a\] for the term \[{{\log }_{4}}7\] by substituting a = 4 and b = 7 we get:
\[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{{{\log }_{{{\log }_{2}}9}}2}}\times {{\left( 7 \right)}^{\dfrac{1}{2}{{\log }_{7}}4}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, let us assume $x={{7}^{\dfrac{1}{2}{{\log }_{7}}4}}$ we will solve x part first:
\[\begin{align}
& x={{7}^{\dfrac{1}{2}{{\log }_{7}}4}} \\
& \text{as }{{\text{2}}^{\text{2}}}=4 \\
& x={{7}^{\dfrac{1}{2}{{\log }_{7}}{{4}^{2}}}} \\
\end{align}\]
Also, we have a log property that $m{{\log }_{n}}=\log {{n}^{m}}$ using this above by substituting $m=\dfrac{1}{2}\text{ and }n={{2}^{2}}$ we get:
\[\begin{align}
& x={{7}^{{{\log }_{7}}}}^{{{\left( {{2}^{2}} \right)}^{\dfrac{1}{2}}}} \\
& x={{7}^{{{\log }_{7}}2}} \\
\end{align}\]
Substituting this result in equation (i) we have:
\[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{{{\log }_{{{\log }_{2}}9}}2}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}}\]
Now using property $m{{\log }_{n}}=\log {{n}^{m}}$ in above by taking m = 2 and n = 2 for the first term we get:
\[\begin{align}
& {{\left( {{\log }_{2}}9 \right)}^{{{\log }_{{{\log }_{2}}9}}{{2}^{2}}}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
& {{\left( {{\log }_{2}}9 \right)}^{lo{{g}_{{{\log }_{2}}9}}4}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
\end{align}\]
Again we have property of log which says that ${{a}^{{{\log }_{a}}b}}=b$
Using this in above, substitute $a={{\log }_{2}}9\text{ and b}=4$ we get:
\[\begin{align}
& {{\left( {{\log }_{2}}9 \right)}^{{{\log }_{{{\log }_{2}}9}}4}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
& \Rightarrow 4\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
\end{align}\]
Again, using property ${{a}^{{{\log }_{a}}b}}=b$ by substituting a = 7 and b = 2 we have:
\[\Rightarrow 4\times 2=8\]
So, the value of \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}}\] is 8.
Note: Students can get confuse at the point where we are applying log property given as \[\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Here, in this question we have used the above property of log in the term \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\]
We have only applied to power of ${{\log }_{2}}9$ that is to \[\dfrac{2}{{{\log }_{2}}{{\log }_{2}}9}\]
Now, compare this formula as given in equation (ii) above, we will use \[b={{\log }_{2}}9\text{ and a}=2\]
Then, after applying this formula we get: \[\dfrac{1\times 2}{{{\log }_{2}}{{\log }_{2}}9}=2{{\log }_{{{\log }_{2}}9}}2\]
So, in RHS we have \[{{\log }_{2}}9\] in the base of log2. So this point of confusion is cleared.
Complete step-by-step solution:
We know that, \[\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a\]
We have our expression as \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}}\]
Using the property of log stated above in our expression by using $b={{\log }_{2}}9\text{ and a}=2$ we get:
\[\begin{align}
& {{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}} \\
& {{\left( {{\log }_{2}}9 \right)}^{lo{{g}_{{{\log }_{2}}9}}2}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}} \\
\end{align}\]
Now, changing $\sqrt{7}$ to ${{\left( 7 \right)}^{\dfrac{1}{2}}}$ and using log identity \[\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a\] for the term \[{{\log }_{4}}7\] by substituting a = 4 and b = 7 we get:
\[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{{{\log }_{{{\log }_{2}}9}}2}}\times {{\left( 7 \right)}^{\dfrac{1}{2}{{\log }_{7}}4}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, let us assume $x={{7}^{\dfrac{1}{2}{{\log }_{7}}4}}$ we will solve x part first:
\[\begin{align}
& x={{7}^{\dfrac{1}{2}{{\log }_{7}}4}} \\
& \text{as }{{\text{2}}^{\text{2}}}=4 \\
& x={{7}^{\dfrac{1}{2}{{\log }_{7}}{{4}^{2}}}} \\
\end{align}\]
Also, we have a log property that $m{{\log }_{n}}=\log {{n}^{m}}$ using this above by substituting $m=\dfrac{1}{2}\text{ and }n={{2}^{2}}$ we get:
\[\begin{align}
& x={{7}^{{{\log }_{7}}}}^{{{\left( {{2}^{2}} \right)}^{\dfrac{1}{2}}}} \\
& x={{7}^{{{\log }_{7}}2}} \\
\end{align}\]
Substituting this result in equation (i) we have:
\[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{{{\log }_{{{\log }_{2}}9}}2}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}}\]
Now using property $m{{\log }_{n}}=\log {{n}^{m}}$ in above by taking m = 2 and n = 2 for the first term we get:
\[\begin{align}
& {{\left( {{\log }_{2}}9 \right)}^{{{\log }_{{{\log }_{2}}9}}{{2}^{2}}}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
& {{\left( {{\log }_{2}}9 \right)}^{lo{{g}_{{{\log }_{2}}9}}4}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
\end{align}\]
Again we have property of log which says that ${{a}^{{{\log }_{a}}b}}=b$
Using this in above, substitute $a={{\log }_{2}}9\text{ and b}=4$ we get:
\[\begin{align}
& {{\left( {{\log }_{2}}9 \right)}^{{{\log }_{{{\log }_{2}}9}}4}}\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
& \Rightarrow 4\times {{\left( 7 \right)}^{{{\log }_{7}}2}} \\
\end{align}\]
Again, using property ${{a}^{{{\log }_{a}}b}}=b$ by substituting a = 7 and b = 2 we have:
\[\Rightarrow 4\times 2=8\]
So, the value of \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\times {{\left( \sqrt{7} \right)}^{\dfrac{1}{{{\log }_{4}}7}}}\] is 8.
Note: Students can get confuse at the point where we are applying log property given as \[\dfrac{1}{{{\log }_{a}}b}={{\log }_{b}}a\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Here, in this question we have used the above property of log in the term \[{{\left( {{\left( {{\log }_{2}}9 \right)}^{2}} \right)}^{\dfrac{1}{{{\log }_{2}}{{\log }_{2}}9}}}\]
We have only applied to power of ${{\log }_{2}}9$ that is to \[\dfrac{2}{{{\log }_{2}}{{\log }_{2}}9}\]
Now, compare this formula as given in equation (ii) above, we will use \[b={{\log }_{2}}9\text{ and a}=2\]
Then, after applying this formula we get: \[\dfrac{1\times 2}{{{\log }_{2}}{{\log }_{2}}9}=2{{\log }_{{{\log }_{2}}9}}2\]
So, in RHS we have \[{{\log }_{2}}9\] in the base of log2. So this point of confusion is cleared.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

