
The value of the expression ${{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +{{\cos }^{2}}50{}^\circ $ is
[a] $\dfrac{3}{2}\left( 1+\cos 20{}^\circ \right)$
[b] $\dfrac{3}{4}$
[c] $\dfrac{3}{4}+\cos 20{}^\circ $
[d] $\dfrac{3}{2}$
Answer
508.8k+ views
Hint: Take cos 10 common from the first two terms and use the fact that ${{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)$ and hence prove that the given expression is equal to $1+\dfrac{\cos 40{}^\circ }{2}-\cos 10{}^\circ \cos 50{}^\circ $. Use the fact that $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$ and hence prove that the given expression is equal to $1+\dfrac{\cos 40{}^\circ }{2}-\dfrac{\cos 60{}^\circ }{2}-\dfrac{\cos 40{}^\circ }{2}$. Hence find which of the options are correct.
Complete step-by-step solution:
Let $l={{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +{{\cos }^{2}}50{}^\circ $
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$
Hence, we have
$l={{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +1-{{\sin }^{2}}50{}^\circ $
We know that ${{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)$
Put $A=10{}^\circ $ and $B=50{}^\circ $, we get
${{\cos }^{2}}10{}^\circ -{{\sin }^{2}}50{}^\circ =\cos \left( 10{}^\circ +50{}^\circ \right)\cos \left( 10{}^\circ -50{}^\circ \right)=\cos 60{}^\circ \cos 40{}^\circ $
We know that $\cos 60{}^\circ =\dfrac{1}{2}$. Hence, we have
${{\cos }^{2}}10{}^\circ -{{\sin }^{2}}50{}^\circ =\dfrac{\cos 40{}^\circ }{2}$
Hence, we have
$l=\dfrac{\cos 40{}^\circ }{2}-\cos 10{}^\circ \cos 50{}^\circ $
We know that $2\cos A\cos B=\cos \left( A+B\right)+\cos \left(A-B \right)$
Put $A=10{}^\circ $ and $B=50{}^\circ $, we get
$\begin{align}
& 2\cos 10{}^\circ \cos 50{}^\circ =\cos \left({10{}^\circ +50{}^\circ } \right)+\cos \left({10{}^\circ -50{}^\circ }\right) \\
& =\cos 60{}^\circ +\cos 40{}^\circ \\
\end{align}$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$. Hence, we have
$2\cos 10{}^\circ \cos 50{}^\circ =\dfrac{1}{2}+\cos 40{}^\circ $
Dividing both sides by 2, we get
$\cos 10{}^\circ \cos 50{}^\circ =\dfrac{1}{4}+\dfrac{\cos 40{}^\circ }{2}$
Hence, we have
$l=1+\dfrac{\cos 40{}^\circ }{2}-\dfrac{1}{4}-\dfrac{\cos 40{}^\circ }{2}=\dfrac{3}{4}$
Hence, we have
${{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +1-{{\sin }^{2}}50{}^\circ =\dfrac{3}{4}$
Hence option [b] is correct.
Note:[1] In these types of questions, we should try all the possible ways to simplify the expression. If by one method, does not simplify the problem or gets stuck we should another way to simplify the expression. Usually after at most three trials the problem gets simplified.
[2] One can use the identity ${{\cos }^{2}}x=\dfrac{1+\cos 2x}{2}$ followed by $\cos A+\cos B=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$ instead of ${{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)$ to simplify the expression.
Complete step-by-step solution:
Let $l={{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +{{\cos }^{2}}50{}^\circ $
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$
Hence, we have
$l={{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +1-{{\sin }^{2}}50{}^\circ $
We know that ${{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)$
Put $A=10{}^\circ $ and $B=50{}^\circ $, we get
${{\cos }^{2}}10{}^\circ -{{\sin }^{2}}50{}^\circ =\cos \left( 10{}^\circ +50{}^\circ \right)\cos \left( 10{}^\circ -50{}^\circ \right)=\cos 60{}^\circ \cos 40{}^\circ $
We know that $\cos 60{}^\circ =\dfrac{1}{2}$. Hence, we have
${{\cos }^{2}}10{}^\circ -{{\sin }^{2}}50{}^\circ =\dfrac{\cos 40{}^\circ }{2}$
Hence, we have
$l=\dfrac{\cos 40{}^\circ }{2}-\cos 10{}^\circ \cos 50{}^\circ $
We know that $2\cos A\cos B=\cos \left( A+B\right)+\cos \left(A-B \right)$
Put $A=10{}^\circ $ and $B=50{}^\circ $, we get
$\begin{align}
& 2\cos 10{}^\circ \cos 50{}^\circ =\cos \left({10{}^\circ +50{}^\circ } \right)+\cos \left({10{}^\circ -50{}^\circ }\right) \\
& =\cos 60{}^\circ +\cos 40{}^\circ \\
\end{align}$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$. Hence, we have
$2\cos 10{}^\circ \cos 50{}^\circ =\dfrac{1}{2}+\cos 40{}^\circ $
Dividing both sides by 2, we get
$\cos 10{}^\circ \cos 50{}^\circ =\dfrac{1}{4}+\dfrac{\cos 40{}^\circ }{2}$
Hence, we have
$l=1+\dfrac{\cos 40{}^\circ }{2}-\dfrac{1}{4}-\dfrac{\cos 40{}^\circ }{2}=\dfrac{3}{4}$
Hence, we have
${{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +1-{{\sin }^{2}}50{}^\circ =\dfrac{3}{4}$
Hence option [b] is correct.
Note:[1] In these types of questions, we should try all the possible ways to simplify the expression. If by one method, does not simplify the problem or gets stuck we should another way to simplify the expression. Usually after at most three trials the problem gets simplified.
[2] One can use the identity ${{\cos }^{2}}x=\dfrac{1+\cos 2x}{2}$ followed by $\cos A+\cos B=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$ instead of ${{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)$ to simplify the expression.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
