
The value of $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$ is equal to:
(A) $\dfrac{5}{6}$
(B) $\dfrac{7}{6}$
(C) $\dfrac{1}{6}$
(D) $\dfrac{1}{7}$
Answer
506.7k+ views
Hint: The given question deals with finding the value of trigonometric expression doing basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$ and double angle formula for cosine. Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem. We must know the simplification rules to solve the problem with ease.
Complete step-by-step solution:
In the given problem, we have to find value of $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$. So, the angle given in the trigonometric function tangent is the difference of two angles whose tangent is already given to in the problem.
So, we have, $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$
Expanding the trigonometric function using the compound angle formula for tangent $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$. So, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right) - \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)}}{{1 + \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right)\tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)}}$
Now, we know that $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$. So, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\left( {\dfrac{1}{2}} \right) - \left( {\dfrac{1}{3}} \right)}}{{1 + \left( {\dfrac{1}{2}} \right) \times \left( {\dfrac{1}{3}} \right)}}$
Taking the LCM in numerator, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\dfrac{{3 - 2}}{6}}}{{1 + \left( {\dfrac{1}{2}} \right) \times \left( {\dfrac{1}{3}} \right)}}$
Simplifying the calculations, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\dfrac{{3 - 2}}{6}}}{{1 + \dfrac{1}{6}}}$
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\left( {\dfrac{1}{6}} \right)}}{{\left( {\dfrac{7}{6}} \right)}}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{1}{7}$
Therefore, value of $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$ is $\dfrac{1}{7}$.
Hence, Option (D) is the correct answer.
Note: We must have a strong grip over the concepts of trigonometry, related formulae and rules to ace these types of questions. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. We should take care of the calculations while solving such problems.
Complete step-by-step solution:
In the given problem, we have to find value of $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$. So, the angle given in the trigonometric function tangent is the difference of two angles whose tangent is already given to in the problem.
So, we have, $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$
Expanding the trigonometric function using the compound angle formula for tangent $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$. So, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right) - \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)}}{{1 + \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right)\tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)}}$
Now, we know that $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$. So, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\left( {\dfrac{1}{2}} \right) - \left( {\dfrac{1}{3}} \right)}}{{1 + \left( {\dfrac{1}{2}} \right) \times \left( {\dfrac{1}{3}} \right)}}$
Taking the LCM in numerator, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\dfrac{{3 - 2}}{6}}}{{1 + \left( {\dfrac{1}{2}} \right) \times \left( {\dfrac{1}{3}} \right)}}$
Simplifying the calculations, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\dfrac{{3 - 2}}{6}}}{{1 + \dfrac{1}{6}}}$
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{{\left( {\dfrac{1}{6}} \right)}}{{\left( {\dfrac{7}{6}} \right)}}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right] = \dfrac{1}{7}$
Therefore, value of $\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right]$ is $\dfrac{1}{7}$.
Hence, Option (D) is the correct answer.
Note: We must have a strong grip over the concepts of trigonometry, related formulae and rules to ace these types of questions. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. We should take care of the calculations while solving such problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

