
The value of $\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $ is equal to:
A. $680$
B. $1085$
C. $560$
D. $1240$
Answer
577.8k+ views
Hint:In this question, we are given $\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $ and we need to find its value.
We will use the formula:
${}^n{C_m} = \dfrac{{\left| \!{\underline {\,
n \,}} \right. }}{{\left| \!{\underline {\,
m \,}} \right. .\left| \!{\underline {\,
{n - m} \,}} \right. }}$ where $\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$.Using these concepts we try to solve the question.
Complete step-by-step answer:
In this question, we need to find the value of $\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ - - - - (1)$
Here firstly we reduce ${r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)$into a simpler form and then put summation sign.
We know that
${}^n{C_m} = \dfrac{{\left| \!{\underline {\,
n \,}} \right. }}{{\left| \!{\underline {\,
m \,}} \right. .\left| \!{\underline {\,
{n - m} \,}} \right. }}$$ - - - - - (2)$
Where $\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$
Now using (2), we get
${}^{15}{C_r} = \dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
r \,}} \right. .\left| \!{\underline {\,
{15 - r} \,}} \right. }}$$ - - - - - - (3)$
And again using (2), we get
${}^{15}{C_{r - 1}} = \dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
{(r - 1)} \,}} \right. .\left| \!{\underline {\,
{15 - (r - 1)} \,}} \right. }}$
${}^{15}{C_{r - 1}} = \dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
{(r - 1)} \,}} \right. .\left| \!{\underline {\,
{16 - r} \,}} \right. }}$$ - - - - - (4)$
Now substituting these values from (3) and (4) in (1),
$\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ = \sum\limits_{r = 1}^{15} {{r^2}} $$\left( {\dfrac{{\dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
r \,}} \right. .\left| \!{\underline {\,
{15 - r} \,}} \right. }}}}{{\dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
{r - 1} \,}} \right. .\left| \!{\underline {\,
{16 - r} \,}} \right. }}}}} \right)$
$\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$ and hence we get,
$ = \sum\limits_{r = 1}^{15} {{r^2}} $$\left( {\dfrac{{\left| \!{\underline {\,
{15} \,}} \right. \left| \!{\underline {\,
{r - 1} \,}} \right. \left| \!{\underline {\,
{16 - r} \,}} \right. }}{{\left| \!{\underline {\,
{15} \,}} \right. \left| \!{\underline {\,
r \,}} \right. \left| \!{\underline {\,
{15 - r} \,}} \right. }}} \right)$
$ = \sum\limits_{r = 1}^{15} {{r^2}} $$\left( {\dfrac{{16 - r}}{r}} \right)$
$ = \sum\limits_{r = 1}^{15} {(16r - {r^2})} $
So now separating both the terms,
$\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ = \sum\limits_{r = 1}^{15} {16r - \sum\limits_{r = 1}^{15} {{r^2}} } $$ - - - - - (5)$
Now we know that
$\sum\limits_{n = 1}^m n = \dfrac{{m(m + 1)}}{2}$$ - - - - - (6)$
$\sum\limits_{n = 1}^m {{n^2}} = \dfrac{{m(m + 1)(2m + 1)}}{6}$$ - - - - - (7)$
Using (6) and (7) in (5), we get
$\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ = 16\left( {\dfrac{{15(15 + 1)}}{2}} \right) - 15\left( {\dfrac{{15(15 + 1)(30 + 1)}}{6}} \right)$
$ = $$1920 - 1240 = 680$
Hence we get its value as $680$
So, the correct answer is “Option A”.
Note:In the above question, after equation (5), we have used the formula $\sum\limits_{n = 1}^m n = \dfrac{{m(m + 1)}}{2}$ and
$\sum\limits_{n = 1}^m {{n^2}} = \dfrac{{m(m + 1)(2m + 1)}}{6}$. These formulae are very helpful have to remember and also combination formula i.e ${}^n{C_m} = \dfrac{{\left| \!{\underline {\,
n \,}} \right. }}{{\left| \!{\underline {\,
m \,}} \right. .\left| \!{\underline {\,
{n - m} \,}} \right. }}$ where $\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$.
We will use the formula:
${}^n{C_m} = \dfrac{{\left| \!{\underline {\,
n \,}} \right. }}{{\left| \!{\underline {\,
m \,}} \right. .\left| \!{\underline {\,
{n - m} \,}} \right. }}$ where $\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$.Using these concepts we try to solve the question.
Complete step-by-step answer:
In this question, we need to find the value of $\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ - - - - (1)$
Here firstly we reduce ${r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)$into a simpler form and then put summation sign.
We know that
${}^n{C_m} = \dfrac{{\left| \!{\underline {\,
n \,}} \right. }}{{\left| \!{\underline {\,
m \,}} \right. .\left| \!{\underline {\,
{n - m} \,}} \right. }}$$ - - - - - (2)$
Where $\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$
Now using (2), we get
${}^{15}{C_r} = \dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
r \,}} \right. .\left| \!{\underline {\,
{15 - r} \,}} \right. }}$$ - - - - - - (3)$
And again using (2), we get
${}^{15}{C_{r - 1}} = \dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
{(r - 1)} \,}} \right. .\left| \!{\underline {\,
{15 - (r - 1)} \,}} \right. }}$
${}^{15}{C_{r - 1}} = \dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
{(r - 1)} \,}} \right. .\left| \!{\underline {\,
{16 - r} \,}} \right. }}$$ - - - - - (4)$
Now substituting these values from (3) and (4) in (1),
$\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ = \sum\limits_{r = 1}^{15} {{r^2}} $$\left( {\dfrac{{\dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
r \,}} \right. .\left| \!{\underline {\,
{15 - r} \,}} \right. }}}}{{\dfrac{{\left| \!{\underline {\,
{15} \,}} \right. }}{{\left| \!{\underline {\,
{r - 1} \,}} \right. .\left| \!{\underline {\,
{16 - r} \,}} \right. }}}}} \right)$
$\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$ and hence we get,
$ = \sum\limits_{r = 1}^{15} {{r^2}} $$\left( {\dfrac{{\left| \!{\underline {\,
{15} \,}} \right. \left| \!{\underline {\,
{r - 1} \,}} \right. \left| \!{\underline {\,
{16 - r} \,}} \right. }}{{\left| \!{\underline {\,
{15} \,}} \right. \left| \!{\underline {\,
r \,}} \right. \left| \!{\underline {\,
{15 - r} \,}} \right. }}} \right)$
$ = \sum\limits_{r = 1}^{15} {{r^2}} $$\left( {\dfrac{{16 - r}}{r}} \right)$
$ = \sum\limits_{r = 1}^{15} {(16r - {r^2})} $
So now separating both the terms,
$\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ = \sum\limits_{r = 1}^{15} {16r - \sum\limits_{r = 1}^{15} {{r^2}} } $$ - - - - - (5)$
Now we know that
$\sum\limits_{n = 1}^m n = \dfrac{{m(m + 1)}}{2}$$ - - - - - (6)$
$\sum\limits_{n = 1}^m {{n^2}} = \dfrac{{m(m + 1)(2m + 1)}}{6}$$ - - - - - (7)$
Using (6) and (7) in (5), we get
$\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} $$ = 16\left( {\dfrac{{15(15 + 1)}}{2}} \right) - 15\left( {\dfrac{{15(15 + 1)(30 + 1)}}{6}} \right)$
$ = $$1920 - 1240 = 680$
Hence we get its value as $680$
So, the correct answer is “Option A”.
Note:In the above question, after equation (5), we have used the formula $\sum\limits_{n = 1}^m n = \dfrac{{m(m + 1)}}{2}$ and
$\sum\limits_{n = 1}^m {{n^2}} = \dfrac{{m(m + 1)(2m + 1)}}{6}$. These formulae are very helpful have to remember and also combination formula i.e ${}^n{C_m} = \dfrac{{\left| \!{\underline {\,
n \,}} \right. }}{{\left| \!{\underline {\,
m \,}} \right. .\left| \!{\underline {\,
{n - m} \,}} \right. }}$ where $\left| \!{\underline {\,
n \,}} \right. = 1.2.3.4........n$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

