
The value of $sin{15^ \circ }$ is
A) $\dfrac{{\sqrt 3 + 1}}{{\sqrt 2 }}$
B) $\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
C) $\dfrac{{\sqrt 3 + 1}}{2}$
D) $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Answer
576.3k+ views
Hint:
We can expand $\sin 15^\circ $ as $\sin \left( {45^\circ - 30^\circ } \right)$ . Then we can simplify it using the identity, $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . Then we can substitute this in the given expression. We can then give the values for trigonometric functions \[\cos 45^\circ ,\sin 45^\circ ,\cos 30^\circ \] and \[\sin 30^\circ \] . After further simplification, we will get the required solution. Then we can check the options and find the correct option.
Complete step by step solution:
We need to find the value of $\sin 15^\circ $
We can write 15 as 15 = 45 – 30. So, $\sin 15^\circ $ will become
$ \Rightarrow \sin 15^\circ = \sin \left( {45^\circ - 30^\circ } \right)$
We know that, $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . On applying this identity, we get
$ \Rightarrow \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ $ .
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] , \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] ,\[\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}\] and \[\sin 30^\circ = \dfrac{1}{2}\] . On substituting these in the above equation, we get
$ \Rightarrow \sin 15^\circ = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On simplification, we get
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
As the denominators are equal, we can add the numerators.
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Therefore, the value of $\sin 15^\circ $ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$ .
So, the correct answer is option D.
Note:
Alternate method to solve this problem is given by,
We need to find the value of $\sin 15^\circ $
We can write 15 as 15 = 60 – 45. So, $\sin 15^\circ $will become
$ \Rightarrow \sin 15^\circ = \sin \left( {60^\circ - 45^\circ } \right)$
We know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . On applying this identity, we get
$ \Rightarrow \sin 15^\circ = \sin 60^\circ \cos 45^\circ - \cos 60^\circ \sin 45^\circ $.
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] , \[\cos 60^\circ = \dfrac{1}{2}\] , \[\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}\] and \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] . On substituting these in the above equation, we get
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
On simplification, we get
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
As the denominators are equal, we can add the numerators.
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Therefore, the value of $\sin 15^\circ $ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$ .
So, the correct answer is option D.
We must take care of the order while expanding the trigonometric function of the difference of the angle. We must know the values of trigonometric function at basic angles such as 0, 30, 45, 60 and 90 degrees.
We can expand $\sin 15^\circ $ as $\sin \left( {45^\circ - 30^\circ } \right)$ . Then we can simplify it using the identity, $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . Then we can substitute this in the given expression. We can then give the values for trigonometric functions \[\cos 45^\circ ,\sin 45^\circ ,\cos 30^\circ \] and \[\sin 30^\circ \] . After further simplification, we will get the required solution. Then we can check the options and find the correct option.
Complete step by step solution:
We need to find the value of $\sin 15^\circ $
We can write 15 as 15 = 45 – 30. So, $\sin 15^\circ $ will become
$ \Rightarrow \sin 15^\circ = \sin \left( {45^\circ - 30^\circ } \right)$
We know that, $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . On applying this identity, we get
$ \Rightarrow \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ $ .
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] , \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] ,\[\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}\] and \[\sin 30^\circ = \dfrac{1}{2}\] . On substituting these in the above equation, we get
$ \Rightarrow \sin 15^\circ = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On simplification, we get
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
As the denominators are equal, we can add the numerators.
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Therefore, the value of $\sin 15^\circ $ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$ .
So, the correct answer is option D.
Note:
Alternate method to solve this problem is given by,
We need to find the value of $\sin 15^\circ $
We can write 15 as 15 = 60 – 45. So, $\sin 15^\circ $will become
$ \Rightarrow \sin 15^\circ = \sin \left( {60^\circ - 45^\circ } \right)$
We know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . On applying this identity, we get
$ \Rightarrow \sin 15^\circ = \sin 60^\circ \cos 45^\circ - \cos 60^\circ \sin 45^\circ $.
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] , \[\cos 60^\circ = \dfrac{1}{2}\] , \[\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}\] and \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] . On substituting these in the above equation, we get
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
On simplification, we get
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
As the denominators are equal, we can add the numerators.
$ \Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Therefore, the value of $\sin 15^\circ $ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$ .
So, the correct answer is option D.
We must take care of the order while expanding the trigonometric function of the difference of the angle. We must know the values of trigonometric function at basic angles such as 0, 30, 45, 60 and 90 degrees.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

What is the median of the first 10 natural numbers class 10 maths CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who is the executive head of the government APresident class 10 social science CBSE

