
The value of $\sin \left( {60^\circ + \theta } \right) - \cos \left( {30^\circ - \theta } \right)$ is equal to
A.$2\cos \theta $
B.$2\sin \theta $
C.0
D.1
Answer
616.5k+ views
Hint- In this particular type of question we need to use the trigonometric formula for sin(a+b) and cos(a-b). To further solve it we need to expand and simplify to get the desired answer.
Complete step-by-step answer:
Since
$
\sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b \\
and{\text{ cos}}\left( {a - b} \right) = \cos a.\cos b + \sin a.\sin b \\
$
\[
\sin \left( {60^\circ + \theta } \right) - \cos \left( {30^\circ - \theta } \right) \\
= \sin 60^\circ .\cos \theta + \cos 60^\circ .sin\theta - \left( {\cos 30^\circ .\cos \theta + \sin 30^\circ .\sin \theta } \right) \\
= \dfrac{{\sqrt 3 }}{2}.\cos \theta + \dfrac{1}{2}.\sin \theta - \dfrac{{\sqrt 3 }}{2}.\cos \theta - \dfrac{1}{2}\sin \theta \\
= 0 \\
\]
Note-
Remember to recall the basic trigonometric formulas while solving such types of questions. Note that this question could also be solved by directly converting $\sin \left( {60^\circ + \theta } \right)$ into $\sin \left( {90^\circ - \left( {30^\circ - \theta } \right)} \right)$ and further into $\cos \left( {30^\circ - \theta } \right)$ , thus cancelling out both the terms to get 0.
Complete step-by-step answer:
Since
$
\sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b \\
and{\text{ cos}}\left( {a - b} \right) = \cos a.\cos b + \sin a.\sin b \\
$
\[
\sin \left( {60^\circ + \theta } \right) - \cos \left( {30^\circ - \theta } \right) \\
= \sin 60^\circ .\cos \theta + \cos 60^\circ .sin\theta - \left( {\cos 30^\circ .\cos \theta + \sin 30^\circ .\sin \theta } \right) \\
= \dfrac{{\sqrt 3 }}{2}.\cos \theta + \dfrac{1}{2}.\sin \theta - \dfrac{{\sqrt 3 }}{2}.\cos \theta - \dfrac{1}{2}\sin \theta \\
= 0 \\
\]
Note-
Remember to recall the basic trigonometric formulas while solving such types of questions. Note that this question could also be solved by directly converting $\sin \left( {60^\circ + \theta } \right)$ into $\sin \left( {90^\circ - \left( {30^\circ - \theta } \right)} \right)$ and further into $\cos \left( {30^\circ - \theta } \right)$ , thus cancelling out both the terms to get 0.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

