
The value of \[\sin {47^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } - \sin {25^ \circ } = \]
A.\[\sin {36^ \circ }\]
B.\[\cos {36^ \circ }\]
C.\[\sin {7^ \circ }\]
D.\[\cos {7^ \circ }\]
Answer
549k+ views
Hint: In this problem we will use the combinations and trigonometric identities. We cannot directly write the values of sin or cos function. Thus we will take values of other trigonometric functions.
Formula used:
\[\sin A - \sin B = 2\cos \dfrac{{A + B}}{2}\sin \dfrac{{A - B}}{2}\]
\[\sin A + \sin B = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Complete step-by-step answer:
Given that,
\[\sin {47^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } - \sin {25^ \circ }\]
\[ \Rightarrow \sin {47^ \circ } - \sin {25^ \circ } + \sin {61^ \circ } - \sin {11^ \circ }\]
Using the first formula mentioned above,
\[ \Rightarrow 2\cos \dfrac{{{{47}^ \circ } + {{25}^ \circ }}}{2}\sin \dfrac{{{{47}^ \circ } - {{25}^ \circ }}}{2} + 2\cos \dfrac{{{{61}^ \circ } + {{11}^ \circ }}}{2}\sin \dfrac{{{{61}^ \circ } - {{11}^ \circ }}}{2}\]
On adding the angles,
\[ \Rightarrow 2\cos \dfrac{{{{72}^ \circ }}}{2}\sin \dfrac{{{{22}^ \circ }}}{2} + 2\cos \dfrac{{{{72}^ \circ }}}{2}\sin \dfrac{{{{50}^ \circ }}}{2}\]
\[ \Rightarrow 2\cos {36^ \circ }\sin {11^ \circ } + 2\cos {36^ \circ }\sin {25^ \circ }\]
Taking the cos angle common,
\[ \Rightarrow 2\cos {36^ \circ }(\sin {11^ \circ } + \sin {25^ \circ })\]
On using the second identity formula,
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin \dfrac{{{{11}^ \circ } + {{25}^ \circ }}}{2}\cos \dfrac{{{{11}^ \circ } - {{25}^ \circ }}}{2}} \right)\]
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin \dfrac{{{{36}^ \circ }}}{2}\cos \dfrac{{ - {{14}^ \circ }}}{2}} \right)\]
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin {{18}^ \circ }\cos \left( { - {7^ \circ }} \right)} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \]
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin {{18}^ \circ }\cos \left( {{7^ \circ }} \right)} \right)\]
\[ \Rightarrow 4\cos {36^ \circ }\sin {18^ \circ }\cos {7^ \circ }\]
Putting the values of the angles as \[\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}\] and \[\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}\]
Thus,
\[ \Rightarrow 4 \times \dfrac{{\sqrt 5 + 1}}{4} \times \dfrac{{\sqrt 5 - 1}}{4} \times \cos {7^ \circ }\]
The values are nothing but \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow 4 \times \dfrac{{{{\left( {\sqrt 5 } \right)}^2} - {1^2}}}{{4 \times 4}} \times \cos {7^ \circ }\]
Taking the squares,
\[ \Rightarrow \dfrac{{5 - 1}}{4} \times \cos {7^ \circ }\]
\[ \Rightarrow \cos {7^ \circ }\]
This is the value of the given expression.
Thus option D is the correct option.
Note: We cannot directly put the values. We need to first use the identities with the help of which we can make the expression easier to solve. And at a point we used the values of the angles. Sometimes we also try to adjust the angles but here we have used the formulas only!
Formula used:
\[\sin A - \sin B = 2\cos \dfrac{{A + B}}{2}\sin \dfrac{{A - B}}{2}\]
\[\sin A + \sin B = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Complete step-by-step answer:
Given that,
\[\sin {47^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } - \sin {25^ \circ }\]
\[ \Rightarrow \sin {47^ \circ } - \sin {25^ \circ } + \sin {61^ \circ } - \sin {11^ \circ }\]
Using the first formula mentioned above,
\[ \Rightarrow 2\cos \dfrac{{{{47}^ \circ } + {{25}^ \circ }}}{2}\sin \dfrac{{{{47}^ \circ } - {{25}^ \circ }}}{2} + 2\cos \dfrac{{{{61}^ \circ } + {{11}^ \circ }}}{2}\sin \dfrac{{{{61}^ \circ } - {{11}^ \circ }}}{2}\]
On adding the angles,
\[ \Rightarrow 2\cos \dfrac{{{{72}^ \circ }}}{2}\sin \dfrac{{{{22}^ \circ }}}{2} + 2\cos \dfrac{{{{72}^ \circ }}}{2}\sin \dfrac{{{{50}^ \circ }}}{2}\]
\[ \Rightarrow 2\cos {36^ \circ }\sin {11^ \circ } + 2\cos {36^ \circ }\sin {25^ \circ }\]
Taking the cos angle common,
\[ \Rightarrow 2\cos {36^ \circ }(\sin {11^ \circ } + \sin {25^ \circ })\]
On using the second identity formula,
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin \dfrac{{{{11}^ \circ } + {{25}^ \circ }}}{2}\cos \dfrac{{{{11}^ \circ } - {{25}^ \circ }}}{2}} \right)\]
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin \dfrac{{{{36}^ \circ }}}{2}\cos \dfrac{{ - {{14}^ \circ }}}{2}} \right)\]
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin {{18}^ \circ }\cos \left( { - {7^ \circ }} \right)} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \]
\[ \Rightarrow 2\cos {36^ \circ }\left( {2\sin {{18}^ \circ }\cos \left( {{7^ \circ }} \right)} \right)\]
\[ \Rightarrow 4\cos {36^ \circ }\sin {18^ \circ }\cos {7^ \circ }\]
Putting the values of the angles as \[\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}\] and \[\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}\]
Thus,
\[ \Rightarrow 4 \times \dfrac{{\sqrt 5 + 1}}{4} \times \dfrac{{\sqrt 5 - 1}}{4} \times \cos {7^ \circ }\]
The values are nothing but \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow 4 \times \dfrac{{{{\left( {\sqrt 5 } \right)}^2} - {1^2}}}{{4 \times 4}} \times \cos {7^ \circ }\]
Taking the squares,
\[ \Rightarrow \dfrac{{5 - 1}}{4} \times \cos {7^ \circ }\]
\[ \Rightarrow \cos {7^ \circ }\]
This is the value of the given expression.
Thus option D is the correct option.
Note: We cannot directly put the values. We need to first use the identities with the help of which we can make the expression easier to solve. And at a point we used the values of the angles. Sometimes we also try to adjust the angles but here we have used the formulas only!
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

