
The value of \[{{\sin }^{3}}({{10}^{\circ }})+{{\sin }^{3}}({{50}^{\circ }})-{{\sin }^{3}}({{70}^{\circ }})\] is
A. 0
B. \[\dfrac{5}{8}\]
C. \[\dfrac{-3}{8}\]
D. \[\dfrac{-5}{8}\]
Answer
606k+ views
Hint: The most important formulae that will be used in solving this question are as follows:
\[\Rightarrow {{\sin }^{3}}\theta =\dfrac{1}{4}\left( 3\sin \theta -\sin \left( 3\theta \right) \right)\]
\[\Rightarrow \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right)\]
In this question, we will first write the value of \[{{\sin }^{3}}x\] with the given values of x , using the relation that is given above. Then we will further use some basic relations and values of trigonometric functions to get the expression simplified. Then, we will use the formula to find the difference of two sin functions as given above and hence, we will get the final answer.
Complete step-by-step answer:
In this question, we are asked to find the value of the given trigonometric expression which is as follows
\[{{\sin }^{3}}({{10}^{\circ }})+{{\sin }^{3}}({{50}^{\circ }})-{{\sin }^{3}}({{70}^{\circ }})\]
Now, we will use the given formula as follows
\[\Rightarrow {{\sin }^{3}}\theta =\dfrac{1}{4}\left( 3\sin \theta -\sin \left( 3\theta \right) \right)\]
Now, we can write the given expression as follows using the above relation
\[\begin{align}
& \Rightarrow {{\sin }^{3}}({{10}^{\circ }})+{{\sin }^{3}}({{50}^{\circ }})-{{\sin }^{3}}({{70}^{\circ }}) \\
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( 3\times {{10}^{\circ }} \right)+3\sin {{10}^{\circ }} \right)+\dfrac{1}{4}\left( -\sin \left( 3\times {{50}^{\circ }} \right)+3\sin {{50}^{\circ }} \right)-\dfrac{1}{4}\left( -\sin \left( 3\times {{70}^{\circ }} \right)+3\sin {{70}^{\circ }} \right) \\
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( 3\times {{10}^{\circ }} \right)+3\sin {{10}^{\circ }} \right)+\dfrac{1}{4}\left( -\sin \left( 3\times {{50}^{\circ }} \right)+3\sin {{50}^{\circ }} \right)-\dfrac{1}{4}\left( -\sin \left( 3\times {{70}^{\circ }} \right)+3\sin {{70}^{\circ }} \right) \\
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( {{30}^{\circ }} \right)-\sin \left( {{150}^{\circ }} \right)+\sin \left( {{210}^{\circ }} \right) \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
\end{align}\]
Now, as we know that
\[\begin{align}
& \Rightarrow \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \sin {{150}^{\circ }}=\sin \left( {{180}^{\circ }}-{{30}^{\circ }} \right)=\dfrac{1}{2} \\
& \left[ \sin \left( {{180}^{\circ }}-x \right)=\sin x \right] \\
& \Rightarrow \sin {{210}^{\circ }}=\sin \left( {{180}^{\circ }}+{{30}^{\circ }} \right)=\dfrac{-1}{2} \\
& \left[ \sin \left( {{180}^{\circ }}+x \right)=-\sin x \right] \\
\end{align}\]
Hence, we can write the above expression as follows
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( {{30}^{\circ }} \right)-\sin \left( {{150}^{\circ }} \right)+\sin \left( {{210}^{\circ }} \right) \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{1}{4}\left( -\dfrac{1}{2}-\dfrac{1}{2}+\left( \dfrac{-1}{2} \right) \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{-1}{4}\left( \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{-1}{4}\left( \dfrac{3}{2} \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
\end{align}\]
Now, we will use the formula that is given in the hint for subtracting two sin functions and we can write as follows
\[\begin{align}
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \sin \left( \dfrac{{{50}^{\circ }}+{{70}^{\circ }}}{2} \right) \right)\left( \sin \left( \dfrac{{{50}^{\circ }}-{{70}^{\circ }}}{2} \right) \right) \right) \\
& \left[ \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \right] \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \cos \left( \dfrac{{{120}^{\circ }}}{2} \right) \right)\left( \sin \left( \dfrac{-{{20}^{\circ }}}{2} \right) \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \cos \left( {{60}^{\circ }} \right) \right)\left( \sin \left( -{{10}^{\circ }} \right) \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \cos \left( {{60}^{\circ }} \right) \right)\left( \sin \left( -{{10}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that the value of \[\cos {{60}^{\circ }}\] is \[\dfrac{1}{2}\] , hence, we can write it as follows
\[\begin{align}
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\times \dfrac{\sqrt{3}}{2}\left( \sin \left( -{{10}^{\circ }} \right) \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}-\left( \sin \left( {{10}^{\circ }} \right) \right) \right) \\
& \left[ \sin \left( -x \right)=-\sin x \right] \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\times 0 \\
& \Rightarrow \dfrac{-3}{8} \\
\end{align}\]
NOTE:-
For solving this question correctly, the students must know about the trigonometric functions like some of the trigonometric relations such as the following
\[\begin{align}
& \left[ \sin \left( {{180}^{\circ }}-x \right)=\sin x \right] \\
& \left[ \sin \left( {{180}^{\circ }}+x \right)=-\sin x \right] \\
\end{align}\]
Without knowing these values, one can never get to the correct answer.
\[\Rightarrow {{\sin }^{3}}\theta =\dfrac{1}{4}\left( 3\sin \theta -\sin \left( 3\theta \right) \right)\]
\[\Rightarrow \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right)\]
In this question, we will first write the value of \[{{\sin }^{3}}x\] with the given values of x , using the relation that is given above. Then we will further use some basic relations and values of trigonometric functions to get the expression simplified. Then, we will use the formula to find the difference of two sin functions as given above and hence, we will get the final answer.
Complete step-by-step answer:
In this question, we are asked to find the value of the given trigonometric expression which is as follows
\[{{\sin }^{3}}({{10}^{\circ }})+{{\sin }^{3}}({{50}^{\circ }})-{{\sin }^{3}}({{70}^{\circ }})\]
Now, we will use the given formula as follows
\[\Rightarrow {{\sin }^{3}}\theta =\dfrac{1}{4}\left( 3\sin \theta -\sin \left( 3\theta \right) \right)\]
Now, we can write the given expression as follows using the above relation
\[\begin{align}
& \Rightarrow {{\sin }^{3}}({{10}^{\circ }})+{{\sin }^{3}}({{50}^{\circ }})-{{\sin }^{3}}({{70}^{\circ }}) \\
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( 3\times {{10}^{\circ }} \right)+3\sin {{10}^{\circ }} \right)+\dfrac{1}{4}\left( -\sin \left( 3\times {{50}^{\circ }} \right)+3\sin {{50}^{\circ }} \right)-\dfrac{1}{4}\left( -\sin \left( 3\times {{70}^{\circ }} \right)+3\sin {{70}^{\circ }} \right) \\
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( 3\times {{10}^{\circ }} \right)+3\sin {{10}^{\circ }} \right)+\dfrac{1}{4}\left( -\sin \left( 3\times {{50}^{\circ }} \right)+3\sin {{50}^{\circ }} \right)-\dfrac{1}{4}\left( -\sin \left( 3\times {{70}^{\circ }} \right)+3\sin {{70}^{\circ }} \right) \\
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( {{30}^{\circ }} \right)-\sin \left( {{150}^{\circ }} \right)+\sin \left( {{210}^{\circ }} \right) \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
\end{align}\]
Now, as we know that
\[\begin{align}
& \Rightarrow \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \sin {{150}^{\circ }}=\sin \left( {{180}^{\circ }}-{{30}^{\circ }} \right)=\dfrac{1}{2} \\
& \left[ \sin \left( {{180}^{\circ }}-x \right)=\sin x \right] \\
& \Rightarrow \sin {{210}^{\circ }}=\sin \left( {{180}^{\circ }}+{{30}^{\circ }} \right)=\dfrac{-1}{2} \\
& \left[ \sin \left( {{180}^{\circ }}+x \right)=-\sin x \right] \\
\end{align}\]
Hence, we can write the above expression as follows
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( -\sin \left( {{30}^{\circ }} \right)-\sin \left( {{150}^{\circ }} \right)+\sin \left( {{210}^{\circ }} \right) \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{1}{4}\left( -\dfrac{1}{2}-\dfrac{1}{2}+\left( \dfrac{-1}{2} \right) \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{-1}{4}\left( \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{-1}{4}\left( \dfrac{3}{2} \right)+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+\left( \sin {{50}^{\circ }} \right)-\left( \sin {{70}^{\circ }} \right) \right) \\
\end{align}\]
Now, we will use the formula that is given in the hint for subtracting two sin functions and we can write as follows
\[\begin{align}
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \sin \left( \dfrac{{{50}^{\circ }}+{{70}^{\circ }}}{2} \right) \right)\left( \sin \left( \dfrac{{{50}^{\circ }}-{{70}^{\circ }}}{2} \right) \right) \right) \\
& \left[ \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \right] \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \cos \left( \dfrac{{{120}^{\circ }}}{2} \right) \right)\left( \sin \left( \dfrac{-{{20}^{\circ }}}{2} \right) \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \cos \left( {{60}^{\circ }} \right) \right)\left( \sin \left( -{{10}^{\circ }} \right) \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\left( \cos \left( {{60}^{\circ }} \right) \right)\left( \sin \left( -{{10}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that the value of \[\cos {{60}^{\circ }}\] is \[\dfrac{1}{2}\] , hence, we can write it as follows
\[\begin{align}
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}+2\times \dfrac{\sqrt{3}}{2}\left( \sin \left( -{{10}^{\circ }} \right) \right) \right) \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\left( \sin {{10}^{\circ }}-\left( \sin \left( {{10}^{\circ }} \right) \right) \right) \\
& \left[ \sin \left( -x \right)=-\sin x \right] \\
& \Rightarrow \dfrac{-3}{8}+\dfrac{3}{4}\times 0 \\
& \Rightarrow \dfrac{-3}{8} \\
\end{align}\]
NOTE:-
For solving this question correctly, the students must know about the trigonometric functions like some of the trigonometric relations such as the following
\[\begin{align}
& \left[ \sin \left( {{180}^{\circ }}-x \right)=\sin x \right] \\
& \left[ \sin \left( {{180}^{\circ }}+x \right)=-\sin x \right] \\
\end{align}\]
Without knowing these values, one can never get to the correct answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

