
The value of \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] is equal to
(A) \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \]
(B) \[{{\tan }^{2}}45{}^\circ +{{\cot }^{2}}45{}^\circ \]
(C) \[{{\sec }^{2}}90{}^\circ \]
(D) \[0\]
Answer
600k+ views
Hint: It is given that our expression is \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] . We know that, \[\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\] and \[\cos 60{}^\circ =\dfrac{1}{2}\] . Now, put these values in the expression, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] and calculate its value. We also know that, \[\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}\] and \[\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}\] . Now, put these values in the expression \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] and solve it further. Now, compare values and conclude the answer.
Complete step by step solution:
According to the question, it is given that our expression is
\[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] …………………..(1)
In this equation, we have summation of two terms \[{{\sin }^{2}}60{}^\circ \] and \[{{\cos }^{2}}60{}^\circ \] . To solve this equation, we need the value of \[\sin 60{}^\circ \] and \[\cos 60{}^\circ \] .
We know that, \[\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\] …………………….(2)
Now, squaring LHS and RHS of equation (2), we get
\[{{\sin }^{2}}60{}^\circ ={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}60{}^\circ =\dfrac{3}{4}\] ………………….(3)
We know that, \[\cos 60{}^\circ =\dfrac{1}{2}\] …………………….(4)
Now, squaring LHS and RHS of equation (4), we get
\[{{\cos }^{2}}60{}^\circ ={{\left( \dfrac{1}{2} \right)}^{2}}\]
\[\Rightarrow {{\cos }^{2}}60{}^\circ =\dfrac{1}{4}\] ………………….(5)
From, equation (1), we have \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] and from equation (3) and equation (5), we have the value of \[{{\sin }^{2}}60{}^\circ \] and \[{{\cos }^{2}}60{}^\circ \] .
Now, putting the value of \[{{\sin }^{2}}60{}^\circ \] and \[{{\cos }^{2}}60{}^\circ \] in equation (1), we get
\[\begin{align}
& {{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \\
& =\dfrac{3}{4}+\dfrac{1}{4} \\
& =\dfrac{4}{4} \\
& =1 \\
\end{align}\]
So, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ =1\] …………………(6)
Now, we have to get the values of the following options by solving them.
In option (A), we have \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] ……………..(7)
We know that, \[\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}\] …………………….(8)
Now, squaring LHS and RHS of equation (8), we get
\[{{\sin }^{2}}45{}^\circ ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}45{}^\circ =\dfrac{1}{2}\] ………………….(9)
We know that, \[\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}\] …………………….(10)
Now, squaring LHS and RHS of equation (10), we get
\[{{\cos }^{2}}45{}^\circ ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\cos }^{2}}45{}^\circ =\dfrac{1}{2}\] ………………….(11)
From, equation (7), we have \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] and from equation (9) and equation (11), we have the value of \[{{\sin }^{2}}45{}^\circ \] and \[{{\cos }^{2}}45{}^\circ \] .
Now, putting the value of \[{{\sin }^{2}}45{}^\circ \] and \[{{\cos }^{2}}45{}^\circ \] in equation (7), we get
\[\begin{align}
& {{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \\
& =\dfrac{1}{2}+\dfrac{1}{2} \\
& =\dfrac{2}{2} \\
& =1 \\
\end{align}\]
So, \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ =1\] …………………(12)
From equation (6), we have \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ =1\] .
From equation (12), we have \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ =1\] .
The RHS of equation (6) and equation (12) is equal to 1. So, the LHS of equation (6) and equation (12) must also be equal.
Therefore, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ ={{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] .
Hence, the correct option is (A).
Note: We can also solve this question without using the value of \[\sin 60{}^\circ \] and \[\cos 60{}^\circ \] .
We know the identity, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] ……………….(1)
Now, replacing \[\theta \] by \[60{}^\circ \] in equation (1), we get
\[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ =1\] …………………..(2)
Replacing \[\theta \] by \[45{}^\circ \] in equation (1), we get
\[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ =1\] …………………….(3)
The RHS of equation (2) and equation (3) is equal to 1. So, the LHS of equation (2) and equation (3) must also be equal.
Therefore, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ ={{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] .
Complete step by step solution:
According to the question, it is given that our expression is
\[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] …………………..(1)
In this equation, we have summation of two terms \[{{\sin }^{2}}60{}^\circ \] and \[{{\cos }^{2}}60{}^\circ \] . To solve this equation, we need the value of \[\sin 60{}^\circ \] and \[\cos 60{}^\circ \] .
We know that, \[\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\] …………………….(2)
Now, squaring LHS and RHS of equation (2), we get
\[{{\sin }^{2}}60{}^\circ ={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}60{}^\circ =\dfrac{3}{4}\] ………………….(3)
We know that, \[\cos 60{}^\circ =\dfrac{1}{2}\] …………………….(4)
Now, squaring LHS and RHS of equation (4), we get
\[{{\cos }^{2}}60{}^\circ ={{\left( \dfrac{1}{2} \right)}^{2}}\]
\[\Rightarrow {{\cos }^{2}}60{}^\circ =\dfrac{1}{4}\] ………………….(5)
From, equation (1), we have \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \] and from equation (3) and equation (5), we have the value of \[{{\sin }^{2}}60{}^\circ \] and \[{{\cos }^{2}}60{}^\circ \] .
Now, putting the value of \[{{\sin }^{2}}60{}^\circ \] and \[{{\cos }^{2}}60{}^\circ \] in equation (1), we get
\[\begin{align}
& {{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ \\
& =\dfrac{3}{4}+\dfrac{1}{4} \\
& =\dfrac{4}{4} \\
& =1 \\
\end{align}\]
So, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ =1\] …………………(6)
Now, we have to get the values of the following options by solving them.
In option (A), we have \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] ……………..(7)
We know that, \[\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}\] …………………….(8)
Now, squaring LHS and RHS of equation (8), we get
\[{{\sin }^{2}}45{}^\circ ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}45{}^\circ =\dfrac{1}{2}\] ………………….(9)
We know that, \[\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}\] …………………….(10)
Now, squaring LHS and RHS of equation (10), we get
\[{{\cos }^{2}}45{}^\circ ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\cos }^{2}}45{}^\circ =\dfrac{1}{2}\] ………………….(11)
From, equation (7), we have \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] and from equation (9) and equation (11), we have the value of \[{{\sin }^{2}}45{}^\circ \] and \[{{\cos }^{2}}45{}^\circ \] .
Now, putting the value of \[{{\sin }^{2}}45{}^\circ \] and \[{{\cos }^{2}}45{}^\circ \] in equation (7), we get
\[\begin{align}
& {{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \\
& =\dfrac{1}{2}+\dfrac{1}{2} \\
& =\dfrac{2}{2} \\
& =1 \\
\end{align}\]
So, \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ =1\] …………………(12)
From equation (6), we have \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ =1\] .
From equation (12), we have \[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ =1\] .
The RHS of equation (6) and equation (12) is equal to 1. So, the LHS of equation (6) and equation (12) must also be equal.
Therefore, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ ={{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] .
Hence, the correct option is (A).
Note: We can also solve this question without using the value of \[\sin 60{}^\circ \] and \[\cos 60{}^\circ \] .
We know the identity, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] ……………….(1)
Now, replacing \[\theta \] by \[60{}^\circ \] in equation (1), we get
\[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ =1\] …………………..(2)
Replacing \[\theta \] by \[45{}^\circ \] in equation (1), we get
\[{{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ =1\] …………………….(3)
The RHS of equation (2) and equation (3) is equal to 1. So, the LHS of equation (2) and equation (3) must also be equal.
Therefore, \[{{\sin }^{2}}60{}^\circ +{{\cos }^{2}}60{}^\circ ={{\sin }^{2}}45{}^\circ +{{\cos }^{2}}45{}^\circ \] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

