
The value of $\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {100^ \circ }$ is equal to
\[{\text{A}}{\text{. }}\dfrac{3}{4}\]
\[{\text{B}}{\text{. }}\dfrac{1}{8}\]
\[{\text{C}}{\text{. }}\dfrac{3}{2}\]
\[{\text{D}}{\text{. }}\dfrac{3}{{16}}\]
Answer
615.9k+ views
Hint: Assume the given equation as, S = $\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {100^ \circ }$ and use the product identity, i.e. $2\sin x\sin y = \cos (x - y) - \cos (x + y)$, and then solve the question.
Complete step-by-step answer:
Let us assume, $S = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {100^ \circ }$.
Dividing and multiplying by 2, we get-
$S = \dfrac{1}{2}(\sin {60^ \circ }\sin {20^ \circ })(2\sin {100^ \circ }\sin {40^ \circ })$
Using the product identity, $2\sin x\sin y = \cos (x - y) - \cos (x + y)$ for $x = {100^ \circ },y = {40^ \circ }$.
$
\therefore S = \dfrac{1}{2}(\sin {60^ \circ }\sin {20^ \circ })(\cos ({100^ \circ } - {40^ \circ }) - \cos ({100^ \circ } + {40^ \circ })) \\
= \dfrac{1}{2}\left( {\dfrac{{\sqrt 3 }}{2}\sin {{20}^ \circ }} \right)\{ \cos {60^ \circ } - \cos {140^ \circ }\} \\
= \dfrac{{\sqrt 3 }}{4}\sin {20^ \circ }\left( {\dfrac{1}{2} - \cos {{140}^ \circ }} \right) \\
= \dfrac{{\sqrt 3 }}{4}\left( {\dfrac{1}{2}\sin {{20}^ \circ } - \sin {{20}^ \circ }\cos {{140}^ \circ }} \right) - (1) \\
$
Dividing and multiplying by 2 in equation (1), we get-
$S = \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - 2\sin {{20}^ \circ }\cos {{140}^ \circ }} \right)$
Using the product identity, $2\sin x\cos y = \sin (x + y) + \sin (x - y)$ for $x = {20^ \circ },y = {140^ \circ }$.
$
\therefore S = \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{20}^ \circ } + {{140}^ \circ }) - \sin ({{20}^ \circ } - {{140}^ \circ })} \right) \\
= \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{160}^ \circ }) + \sin ({{120}^ \circ })} \right) \\
= \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{180}^ \circ } - {{20}^ \circ }) + \sin ({{120}^ \circ })} \right) \\
= \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{20}^ \circ }) + \dfrac{{\sqrt 3 }}{2}} \right) \\
= \dfrac{3}{{16}} \\
$
Therefore, the correct answer is option (D).
Note: While solving such types of questions, always use the correct trigonometric identity, as used in the question. Also, the steps are more, so be careful while writing each step, to avoid mistakes, and then solve the question.
Complete step-by-step answer:
Let us assume, $S = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {100^ \circ }$.
Dividing and multiplying by 2, we get-
$S = \dfrac{1}{2}(\sin {60^ \circ }\sin {20^ \circ })(2\sin {100^ \circ }\sin {40^ \circ })$
Using the product identity, $2\sin x\sin y = \cos (x - y) - \cos (x + y)$ for $x = {100^ \circ },y = {40^ \circ }$.
$
\therefore S = \dfrac{1}{2}(\sin {60^ \circ }\sin {20^ \circ })(\cos ({100^ \circ } - {40^ \circ }) - \cos ({100^ \circ } + {40^ \circ })) \\
= \dfrac{1}{2}\left( {\dfrac{{\sqrt 3 }}{2}\sin {{20}^ \circ }} \right)\{ \cos {60^ \circ } - \cos {140^ \circ }\} \\
= \dfrac{{\sqrt 3 }}{4}\sin {20^ \circ }\left( {\dfrac{1}{2} - \cos {{140}^ \circ }} \right) \\
= \dfrac{{\sqrt 3 }}{4}\left( {\dfrac{1}{2}\sin {{20}^ \circ } - \sin {{20}^ \circ }\cos {{140}^ \circ }} \right) - (1) \\
$
Dividing and multiplying by 2 in equation (1), we get-
$S = \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - 2\sin {{20}^ \circ }\cos {{140}^ \circ }} \right)$
Using the product identity, $2\sin x\cos y = \sin (x + y) + \sin (x - y)$ for $x = {20^ \circ },y = {140^ \circ }$.
$
\therefore S = \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{20}^ \circ } + {{140}^ \circ }) - \sin ({{20}^ \circ } - {{140}^ \circ })} \right) \\
= \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{160}^ \circ }) + \sin ({{120}^ \circ })} \right) \\
= \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{180}^ \circ } - {{20}^ \circ }) + \sin ({{120}^ \circ })} \right) \\
= \dfrac{{\sqrt 3 }}{8}\left( {\sin {{20}^ \circ } - \sin ({{20}^ \circ }) + \dfrac{{\sqrt 3 }}{2}} \right) \\
= \dfrac{3}{{16}} \\
$
Therefore, the correct answer is option (D).
Note: While solving such types of questions, always use the correct trigonometric identity, as used in the question. Also, the steps are more, so be careful while writing each step, to avoid mistakes, and then solve the question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

