
The value of \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is
A.\[{45^ \circ }\]
B.\[{90^ \circ }\]
C.\[{15^ \circ }\]
D.\[{30^ \circ }\]
Answer
493.2k+ views
Hint: In the question related to the inverse trigonometric ratios we solve it by using trigonometric ratios values by converting them to required angles of specific values like \[\left( {\sin {{30}^ \circ } = \dfrac{1}{2}} \right)\] . Same method we have to apply here for the given values . You have to remember the values of \[\sin \] for questions related to inverse trigonometry and identities too .
Complete step-by-step answer:
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] .
Now we know that \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] and \[\sin {30^ \circ } = \dfrac{1}{2}\] , using these values we get ,
\[ = {\sin ^{ - 1}}\left( {\sin {{60}^ \circ }} \right) - {\sin ^{ - 1}}\left( {\sin {{30}^ \circ }} \right)\]
On simplifying we get ,
\[ = {60^ \circ } - {30^ \circ }\] , on solving we get
\[ = {30^ \circ }\]
Therefore , option ( D ) is the correct answer for the given question .
So, the correct answer is “Option D”.
Note: Alternate Method :
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
We can use the identity of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right]\]
On applying the above identity we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{\left( {\dfrac{1}{2}} \right)}^2}} - \dfrac{1}{2}\sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} } \right]\] , on simplifying we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {\dfrac{{4 - 1}}{4}} - \dfrac{1}{2}\sqrt {\dfrac{{4 - 3}}{4}} } \right]\]
On further solving we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{1}{2}} \right]\]
\[ = {\sin ^{ - 1}}\left[ {\dfrac{3}{4} - \dfrac{1}{4}} \right]\]
On simplifying we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{1}{2}} \right]\] , we know that \[\sin {30^ \circ } = \dfrac{1}{2}\] , therefore
\[ = {\sin ^{ - 1}}\left[ {\sin {{30}^ \circ }} \right]\]
On simplifying we get the final answer as
\[ = {30^ \circ }\] .
Hence proved .
Complete step-by-step answer:
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] .
Now we know that \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] and \[\sin {30^ \circ } = \dfrac{1}{2}\] , using these values we get ,
\[ = {\sin ^{ - 1}}\left( {\sin {{60}^ \circ }} \right) - {\sin ^{ - 1}}\left( {\sin {{30}^ \circ }} \right)\]
On simplifying we get ,
\[ = {60^ \circ } - {30^ \circ }\] , on solving we get
\[ = {30^ \circ }\]
Therefore , option ( D ) is the correct answer for the given question .
So, the correct answer is “Option D”.
Note: Alternate Method :
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
We can use the identity of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right]\]
On applying the above identity we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{\left( {\dfrac{1}{2}} \right)}^2}} - \dfrac{1}{2}\sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} } \right]\] , on simplifying we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {\dfrac{{4 - 1}}{4}} - \dfrac{1}{2}\sqrt {\dfrac{{4 - 3}}{4}} } \right]\]
On further solving we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{1}{2}} \right]\]
\[ = {\sin ^{ - 1}}\left[ {\dfrac{3}{4} - \dfrac{1}{4}} \right]\]
On simplifying we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{1}{2}} \right]\] , we know that \[\sin {30^ \circ } = \dfrac{1}{2}\] , therefore
\[ = {\sin ^{ - 1}}\left[ {\sin {{30}^ \circ }} \right]\]
On simplifying we get the final answer as
\[ = {30^ \circ }\] .
Hence proved .
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

