
The value of \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is
A.\[{45^ \circ }\]
B.\[{90^ \circ }\]
C.\[{15^ \circ }\]
D.\[{30^ \circ }\]
Answer
407.4k+ views
Hint: In the question related to the inverse trigonometric ratios we solve it by using trigonometric ratios values by converting them to required angles of specific values like \[\left( {\sin {{30}^ \circ } = \dfrac{1}{2}} \right)\] . Same method we have to apply here for the given values . You have to remember the values of \[\sin \] for questions related to inverse trigonometry and identities too .
Complete step-by-step answer:
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] .
Now we know that \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] and \[\sin {30^ \circ } = \dfrac{1}{2}\] , using these values we get ,
\[ = {\sin ^{ - 1}}\left( {\sin {{60}^ \circ }} \right) - {\sin ^{ - 1}}\left( {\sin {{30}^ \circ }} \right)\]
On simplifying we get ,
\[ = {60^ \circ } - {30^ \circ }\] , on solving we get
\[ = {30^ \circ }\]
Therefore , option ( D ) is the correct answer for the given question .
So, the correct answer is “Option D”.
Note: Alternate Method :
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
We can use the identity of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right]\]
On applying the above identity we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{\left( {\dfrac{1}{2}} \right)}^2}} - \dfrac{1}{2}\sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} } \right]\] , on simplifying we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {\dfrac{{4 - 1}}{4}} - \dfrac{1}{2}\sqrt {\dfrac{{4 - 3}}{4}} } \right]\]
On further solving we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{1}{2}} \right]\]
\[ = {\sin ^{ - 1}}\left[ {\dfrac{3}{4} - \dfrac{1}{4}} \right]\]
On simplifying we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{1}{2}} \right]\] , we know that \[\sin {30^ \circ } = \dfrac{1}{2}\] , therefore
\[ = {\sin ^{ - 1}}\left[ {\sin {{30}^ \circ }} \right]\]
On simplifying we get the final answer as
\[ = {30^ \circ }\] .
Hence proved .
Complete step-by-step answer:
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] .
Now we know that \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] and \[\sin {30^ \circ } = \dfrac{1}{2}\] , using these values we get ,
\[ = {\sin ^{ - 1}}\left( {\sin {{60}^ \circ }} \right) - {\sin ^{ - 1}}\left( {\sin {{30}^ \circ }} \right)\]
On simplifying we get ,
\[ = {60^ \circ } - {30^ \circ }\] , on solving we get
\[ = {30^ \circ }\]
Therefore , option ( D ) is the correct answer for the given question .
So, the correct answer is “Option D”.
Note: Alternate Method :
Given : \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
We can use the identity of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right]\]
On applying the above identity we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{\left( {\dfrac{1}{2}} \right)}^2}} - \dfrac{1}{2}\sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} } \right]\] , on simplifying we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2}\sqrt {\dfrac{{4 - 1}}{4}} - \dfrac{1}{2}\sqrt {\dfrac{{4 - 3}}{4}} } \right]\]
On further solving we get
\[ = {\sin ^{ - 1}}\left[ {\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{1}{2}} \right]\]
\[ = {\sin ^{ - 1}}\left[ {\dfrac{3}{4} - \dfrac{1}{4}} \right]\]
On simplifying we get ,
\[ = {\sin ^{ - 1}}\left[ {\dfrac{1}{2}} \right]\] , we know that \[\sin {30^ \circ } = \dfrac{1}{2}\] , therefore
\[ = {\sin ^{ - 1}}\left[ {\sin {{30}^ \circ }} \right]\]
On simplifying we get the final answer as
\[ = {30^ \circ }\] .
Hence proved .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
