
The value of \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] , then S is equal to
A.\[{{e}^{2}}\]
B.\[{{a}^{2}}\]
C.\[{{2}^{a}}\]
D.\[{{2}^{x}}\]
Answer
604.8k+ views
Hint: According to the question, we have the series, \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] . We know the expansion of \[{{e}^{x}}\] , \[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] . Replace x by \[x{{\log }_{e}}2\] in the expansion of \[{{e}^{x}}\] . Using the formula \[m\log n=\log {{n}^{m}}\] , solve \[x{{\log }_{e}}2\] . Now, we also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] . Use this formula and solve it further.
Complete step-by-step answer:
According to the question, it is given that our series is,
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of \[{{e}^{x}}\] . The expansion of \[{{e}^{x}}\] is
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] ………………….(2)
Now, replacing x by \[x{{\log }_{e}}2\] in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ………………..(2)
We know the formula that, \[m\log n=\log {{n}^{m}}\] .
Now, using this formula in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(3)
We also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] .
Using this formula in equation (3), we get
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(4)
From equation (1), we have \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] .
On comparing equation (1) and equation (4), we get
\[S={{2}^{x}}\] .
So, the value of x is \[{{2}^{x}}\] .
Hence, the correct option is option (D).
Note: For solving this type of questions, one must remember the expansion of \[{{e}^{x}}\] . In this question, one may think to multiply S by \[x{{\log }_{e}}2\] and then subtract it from S.
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty \]
After subtracting we get,
\[S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty \]
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.
Complete step-by-step answer:
According to the question, it is given that our series is,
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of \[{{e}^{x}}\] . The expansion of \[{{e}^{x}}\] is
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] ………………….(2)
Now, replacing x by \[x{{\log }_{e}}2\] in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ………………..(2)
We know the formula that, \[m\log n=\log {{n}^{m}}\] .
Now, using this formula in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(3)
We also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] .
Using this formula in equation (3), we get
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(4)
From equation (1), we have \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] .
On comparing equation (1) and equation (4), we get
\[S={{2}^{x}}\] .
So, the value of x is \[{{2}^{x}}\] .
Hence, the correct option is option (D).
Note: For solving this type of questions, one must remember the expansion of \[{{e}^{x}}\] . In this question, one may think to multiply S by \[x{{\log }_{e}}2\] and then subtract it from S.
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty \]
After subtracting we get,
\[S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty \]
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

