
The value of \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] , then S is equal to
A.\[{{e}^{2}}\]
B.\[{{a}^{2}}\]
C.\[{{2}^{a}}\]
D.\[{{2}^{x}}\]
Answer
589.8k+ views
Hint: According to the question, we have the series, \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] . We know the expansion of \[{{e}^{x}}\] , \[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] . Replace x by \[x{{\log }_{e}}2\] in the expansion of \[{{e}^{x}}\] . Using the formula \[m\log n=\log {{n}^{m}}\] , solve \[x{{\log }_{e}}2\] . Now, we also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] . Use this formula and solve it further.
Complete step-by-step answer:
According to the question, it is given that our series is,
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of \[{{e}^{x}}\] . The expansion of \[{{e}^{x}}\] is
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] ………………….(2)
Now, replacing x by \[x{{\log }_{e}}2\] in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ………………..(2)
We know the formula that, \[m\log n=\log {{n}^{m}}\] .
Now, using this formula in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(3)
We also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] .
Using this formula in equation (3), we get
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(4)
From equation (1), we have \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] .
On comparing equation (1) and equation (4), we get
\[S={{2}^{x}}\] .
So, the value of x is \[{{2}^{x}}\] .
Hence, the correct option is option (D).
Note: For solving this type of questions, one must remember the expansion of \[{{e}^{x}}\] . In this question, one may think to multiply S by \[x{{\log }_{e}}2\] and then subtract it from S.
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty \]
After subtracting we get,
\[S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty \]
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.
Complete step-by-step answer:
According to the question, it is given that our series is,
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of \[{{e}^{x}}\] . The expansion of \[{{e}^{x}}\] is
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] ………………….(2)
Now, replacing x by \[x{{\log }_{e}}2\] in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ………………..(2)
We know the formula that, \[m\log n=\log {{n}^{m}}\] .
Now, using this formula in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(3)
We also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] .
Using this formula in equation (3), we get
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(4)
From equation (1), we have \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] .
On comparing equation (1) and equation (4), we get
\[S={{2}^{x}}\] .
So, the value of x is \[{{2}^{x}}\] .
Hence, the correct option is option (D).
Note: For solving this type of questions, one must remember the expansion of \[{{e}^{x}}\] . In this question, one may think to multiply S by \[x{{\log }_{e}}2\] and then subtract it from S.
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty \]
After subtracting we get,
\[S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty \]
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

