
The value of \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] , then S is equal to
A.\[{{e}^{2}}\]
B.\[{{a}^{2}}\]
C.\[{{2}^{a}}\]
D.\[{{2}^{x}}\]
Answer
509.4k+ views
Hint: According to the question, we have the series, \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] . We know the expansion of \[{{e}^{x}}\] , \[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] . Replace x by \[x{{\log }_{e}}2\] in the expansion of \[{{e}^{x}}\] . Using the formula \[m\log n=\log {{n}^{m}}\] , solve \[x{{\log }_{e}}2\] . Now, we also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] . Use this formula and solve it further.
Complete step-by-step answer:
According to the question, it is given that our series is,
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of \[{{e}^{x}}\] . The expansion of \[{{e}^{x}}\] is
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] ………………….(2)
Now, replacing x by \[x{{\log }_{e}}2\] in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ………………..(2)
We know the formula that, \[m\log n=\log {{n}^{m}}\] .
Now, using this formula in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(3)
We also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] .
Using this formula in equation (3), we get
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(4)
From equation (1), we have \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] .
On comparing equation (1) and equation (4), we get
\[S={{2}^{x}}\] .
So, the value of x is \[{{2}^{x}}\] .
Hence, the correct option is option (D).
Note: For solving this type of questions, one must remember the expansion of \[{{e}^{x}}\] . In this question, one may think to multiply S by \[x{{\log }_{e}}2\] and then subtract it from S.
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty \]
After subtracting we get,
\[S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty \]
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.
Complete step-by-step answer:
According to the question, it is given that our series is,
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of \[{{e}^{x}}\] . The expansion of \[{{e}^{x}}\] is
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty \] ………………….(2)
Now, replacing x by \[x{{\log }_{e}}2\] in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] ………………..(2)
We know the formula that, \[m\log n=\log {{n}^{m}}\] .
Now, using this formula in equation (2), we get
\[{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(3)
We also know the formula, \[{{e}^{{{\log }_{e}}x}}=x\] .
Using this formula in equation (3), we get
\[\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] …………………..(4)
From equation (1), we have \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \] .
On comparing equation (1) and equation (4), we get
\[S={{2}^{x}}\] .
So, the value of x is \[{{2}^{x}}\] .
Hence, the correct option is option (D).
Note: For solving this type of questions, one must remember the expansion of \[{{e}^{x}}\] . In this question, one may think to multiply S by \[x{{\log }_{e}}2\] and then subtract it from S.
\[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty \]
\[S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty \]
After subtracting we get,
\[S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty \]
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
