
The value of \[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right]\] is equal to
A) Odd number
B) Even numbers
C) Prime number
D) Composite number
Answer
554.4k+ views
Hint:
Here, we will first simplify the terms in the bracket by using the trigonometric co ratios. Then we will substitute the values of the angle and simplify the expression further. Then we will further simplify the equation by using basic mathematical operation. We will then use the antilogarithmic formula to find the value of the antilogarithmic expression.
Formula Used:
We will use the following formula:
1) Trigonometric Co-ratio: \[\tan x = \dfrac{1}{{\cot x}}\]
2) Trigonometric Ratio \[\tan \dfrac{\pi }{5} = \sqrt {5 - 2\sqrt 5 } \];\[\tan \dfrac{{2\pi }}{5} = \dfrac{5}{{\sqrt {5 - 2\sqrt 5 } }}\]
3) Antilogarithm Formula \[{\rm{anti lo}}{{\rm{g}}_b}a = {b^a}\]
Complete step by step solution:
We are given an anti logarithmic expression \[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right]\].
Now, let us consider only the terms inside the bracket \[\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}\].
We know that Trigonometric Co-ratio: \[\tan x = \dfrac{1}{{\cot x}}\]
By using the trigonometric co-ratio in the above equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{{{\left( {\tan \left( {\dfrac{\pi }{5}} \right)} \right)}^2} + {{\left( {\tan \left( {\dfrac{{2\pi }}{5}} \right)} \right)}^2} + 20}}{{{{\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{5}} \right)}}} \right)}^2} + {{\left( {\dfrac{1}{{\tan \left( {\dfrac{{2\pi }}{5}} \right)}}} \right)}^2} + 28}}\]
We know that the trigonometric ratio \[\tan \dfrac{\pi }{5} = \sqrt {5 - 2\sqrt 5 } \] and \[\tan \dfrac{{2\pi }}{5} = \dfrac{5}{{\sqrt {5 - 2\sqrt 5 } }}\].
Therefore, by using the trigonometric ratio in the above equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{{{\left( {\sqrt {5 - 2\sqrt 5 } } \right)}^2} + {{\left( {\sqrt {\dfrac{5}{{\left( {5 - 2\sqrt 5 } \right)}}} } \right)}^2} + 20}}{{{{\left( {\dfrac{1}{{\sqrt {5 - 2\sqrt 5 } }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt {\dfrac{5}{{\left( {5 - 2\sqrt 5 } \right)}}} }}} \right)}^2} + 28}}\]
Simplifying the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{\left( {5 - 2\sqrt 5 } \right) + \left( {\dfrac{5}{{5 - 2\sqrt 5 }}} \right) + 20}}{{\left( {\dfrac{1}{{5 - 2\sqrt 5 }}} \right) + \left( {\dfrac{{5 - 2\sqrt 5 }}{5}} \right) + 28}}\]
Now, by taking L.C.M to both the numerators and the denominators, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{\dfrac{{\left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 5 + 20\left( {5 - 2\sqrt 5 } \right)}}{{\left( {5 - 2\sqrt 5 } \right)}}}}{{\dfrac{{5 + \left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 28 \times 5\left( {5 - 2\sqrt 5 } \right)}}{{5\left( {5 - 2\sqrt 5 } \right)}}}}\]
Now, by cancelling out the like terms and rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{5\left[ {\left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 5 + 20\left( {5 - 2\sqrt 5 } \right)} \right]}}{{5 + \left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 28 \times 5\left( {5 - 2\sqrt 5 } \right)}}\]
Now, by multiplying the binomials using the FOIL method, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{5\left[ {25 - 10\sqrt 5 - 10\sqrt 5 + 20 + 5 + 100 - 40\sqrt 5 } \right]}}{{5 + 25 - 10\sqrt 5 - 10\sqrt 5 + 20 + 140\left( {5 - 2\sqrt 5 } \right)}}\]
Now, by rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{5\left[ {150 - 60\sqrt 5 } \right]}}{{750 - 300\sqrt 5 }}\]
Now, by rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{750 - 300\sqrt 5 }}{{750 - 300\sqrt 5 }}\]
Now, by cancelling out the numerator and the denominator, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = 1\] …………………………………………………………………………..\[\left( 1 \right)\]
Now, by substituting the equation \[\left( 1 \right)\] in antilogarithmic expression, we get
\[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right] = {\rm{anti lo}}{{\rm{g}}_5}\left( 1 \right){\rm{ }}\].
We know that antilogarithm formula\[{\rm{anti lo}}{{\rm{g}}_b}a = {b^a}\]
Now, by using the antilogarithm formula, we get
\[ \Rightarrow {\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right] = {5^1}\].
\[ \Rightarrow {\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right] = 5\].
Therefore, the value of \[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right]\] is\[5\].
Therefore 5 is an odd number and a prime number.
Thus, options (A) and (C) are the correct answer.
Note:
We know that Trigonometric Equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We should know that we have many trigonometric identities which are related to all the other trigonometric equations. Trigonometric Ratios of a Particular angle are the ratios of the sides of a right angled triangle with respect to any of its acute angle. A logarithm is defined as the power to which number which must be raised to get some values. We should also know that antilogarithm is the inverse of the logarithm transform.
Here, we will first simplify the terms in the bracket by using the trigonometric co ratios. Then we will substitute the values of the angle and simplify the expression further. Then we will further simplify the equation by using basic mathematical operation. We will then use the antilogarithmic formula to find the value of the antilogarithmic expression.
Formula Used:
We will use the following formula:
1) Trigonometric Co-ratio: \[\tan x = \dfrac{1}{{\cot x}}\]
2) Trigonometric Ratio \[\tan \dfrac{\pi }{5} = \sqrt {5 - 2\sqrt 5 } \];\[\tan \dfrac{{2\pi }}{5} = \dfrac{5}{{\sqrt {5 - 2\sqrt 5 } }}\]
3) Antilogarithm Formula \[{\rm{anti lo}}{{\rm{g}}_b}a = {b^a}\]
Complete step by step solution:
We are given an anti logarithmic expression \[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right]\].
Now, let us consider only the terms inside the bracket \[\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}\].
We know that Trigonometric Co-ratio: \[\tan x = \dfrac{1}{{\cot x}}\]
By using the trigonometric co-ratio in the above equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{{{\left( {\tan \left( {\dfrac{\pi }{5}} \right)} \right)}^2} + {{\left( {\tan \left( {\dfrac{{2\pi }}{5}} \right)} \right)}^2} + 20}}{{{{\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{5}} \right)}}} \right)}^2} + {{\left( {\dfrac{1}{{\tan \left( {\dfrac{{2\pi }}{5}} \right)}}} \right)}^2} + 28}}\]
We know that the trigonometric ratio \[\tan \dfrac{\pi }{5} = \sqrt {5 - 2\sqrt 5 } \] and \[\tan \dfrac{{2\pi }}{5} = \dfrac{5}{{\sqrt {5 - 2\sqrt 5 } }}\].
Therefore, by using the trigonometric ratio in the above equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{{{\left( {\sqrt {5 - 2\sqrt 5 } } \right)}^2} + {{\left( {\sqrt {\dfrac{5}{{\left( {5 - 2\sqrt 5 } \right)}}} } \right)}^2} + 20}}{{{{\left( {\dfrac{1}{{\sqrt {5 - 2\sqrt 5 } }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt {\dfrac{5}{{\left( {5 - 2\sqrt 5 } \right)}}} }}} \right)}^2} + 28}}\]
Simplifying the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{\left( {5 - 2\sqrt 5 } \right) + \left( {\dfrac{5}{{5 - 2\sqrt 5 }}} \right) + 20}}{{\left( {\dfrac{1}{{5 - 2\sqrt 5 }}} \right) + \left( {\dfrac{{5 - 2\sqrt 5 }}{5}} \right) + 28}}\]
Now, by taking L.C.M to both the numerators and the denominators, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{\dfrac{{\left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 5 + 20\left( {5 - 2\sqrt 5 } \right)}}{{\left( {5 - 2\sqrt 5 } \right)}}}}{{\dfrac{{5 + \left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 28 \times 5\left( {5 - 2\sqrt 5 } \right)}}{{5\left( {5 - 2\sqrt 5 } \right)}}}}\]
Now, by cancelling out the like terms and rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{5\left[ {\left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 5 + 20\left( {5 - 2\sqrt 5 } \right)} \right]}}{{5 + \left( {5 - 2\sqrt 5 } \right)\left( {5 - 2\sqrt 5 } \right) + 28 \times 5\left( {5 - 2\sqrt 5 } \right)}}\]
Now, by multiplying the binomials using the FOIL method, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{5\left[ {25 - 10\sqrt 5 - 10\sqrt 5 + 20 + 5 + 100 - 40\sqrt 5 } \right]}}{{5 + 25 - 10\sqrt 5 - 10\sqrt 5 + 20 + 140\left( {5 - 2\sqrt 5 } \right)}}\]
Now, by rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{5\left[ {150 - 60\sqrt 5 } \right]}}{{750 - 300\sqrt 5 }}\]
Now, by rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = \dfrac{{750 - 300\sqrt 5 }}{{750 - 300\sqrt 5 }}\]
Now, by cancelling out the numerator and the denominator, we get
\[ \Rightarrow \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}} = 1\] …………………………………………………………………………..\[\left( 1 \right)\]
Now, by substituting the equation \[\left( 1 \right)\] in antilogarithmic expression, we get
\[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right] = {\rm{anti lo}}{{\rm{g}}_5}\left( 1 \right){\rm{ }}\].
We know that antilogarithm formula\[{\rm{anti lo}}{{\rm{g}}_b}a = {b^a}\]
Now, by using the antilogarithm formula, we get
\[ \Rightarrow {\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right] = {5^1}\].
\[ \Rightarrow {\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right] = 5\].
Therefore, the value of \[{\rm{anti}}{\log _5}\left[ {\dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{5}} \right) + {{\tan }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 20}}{{{{\cot }^2}\left( {\dfrac{\pi }{5}} \right) + {{\cot }^2}\left( {\dfrac{{2\pi }}{5}} \right) + 28}}} \right]\] is\[5\].
Therefore 5 is an odd number and a prime number.
Thus, options (A) and (C) are the correct answer.
Note:
We know that Trigonometric Equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We should know that we have many trigonometric identities which are related to all the other trigonometric equations. Trigonometric Ratios of a Particular angle are the ratios of the sides of a right angled triangle with respect to any of its acute angle. A logarithm is defined as the power to which number which must be raised to get some values. We should also know that antilogarithm is the inverse of the logarithm transform.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

What is the median of the first 10 natural numbers class 10 maths CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who is the executive head of the government APresident class 10 social science CBSE

