
The value of ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$ is
A. $\dfrac{1}{4}$
B. 4
C. 8
D. 16
Answer
616.8k+ views
Hint: Logarithms are another way of thinking about exponents. For example, we know that 2 raised to the 4th power equal 16. This is expressed by the exponential equation ${2^4} = 16$. The above question is the same, expressed by the logarithmic equation.
Complete step-by-step answer:
We have,
${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$
In this logarithmic equation 2 is the base and 16 is called the argument.
We use the property of logarithm.
${\text{lo}}{{\text{g}}_{\text{a}}}{{\text{a}}^{\text{n}}}{\text{ = n lo}}{{\text{g}}_{\text{a}}}{\text{a}}$ and
${\text{lo}}{{\text{g}}_{\text{a}}}{\text{a = 1}}$
Now, we express ${2^4} = 16$.
${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$ = ${\text{lo}}{{\text{g}}_{\text{2}}}{{\text{2}}^{\text{4}}}$
= 4 ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{2}}$
= 4 $ \times $ 1
= 4
Therefore, the value of ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$ is 4.
So, option (B) is correct.
Note: When rewriting an exponential equation in log form or a log equation in exponential form, it is helpful to remember that the base of the logarithm is the same as the base of the exponent. ${\text{lo}}{{\text{g}}_{\text{a}}}{\text{a}}$ is defined when the base a is positive. And the natural logarithm is a logarithm whose base is the number ‘e’.
Complete step-by-step answer:
We have,
${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$
In this logarithmic equation 2 is the base and 16 is called the argument.
We use the property of logarithm.
${\text{lo}}{{\text{g}}_{\text{a}}}{{\text{a}}^{\text{n}}}{\text{ = n lo}}{{\text{g}}_{\text{a}}}{\text{a}}$ and
${\text{lo}}{{\text{g}}_{\text{a}}}{\text{a = 1}}$
Now, we express ${2^4} = 16$.
${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$ = ${\text{lo}}{{\text{g}}_{\text{2}}}{{\text{2}}^{\text{4}}}$
= 4 ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{2}}$
= 4 $ \times $ 1
= 4
Therefore, the value of ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{16}}$ is 4.
So, option (B) is correct.
Note: When rewriting an exponential equation in log form or a log equation in exponential form, it is helpful to remember that the base of the logarithm is the same as the base of the exponent. ${\text{lo}}{{\text{g}}_{\text{a}}}{\text{a}}$ is defined when the base a is positive. And the natural logarithm is a logarithm whose base is the number ‘e’.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

