
The value of $ \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}}{\dfrac{x\sin {{x}^{2}}}{\sin {{x}^{2}}+\sin \left( \ln 6-{{x}^{2}} \right)}} $ is \[\]
A. $ \dfrac{1}{4}\ln \dfrac{3}{2} $ \[\]
B. $ \dfrac{1}{2}\ln \dfrac{3}{2} $ \[\]
C. $ \ln \dfrac{3}{2} $ \[\]
D. $ \dfrac{1}{6}\ln \dfrac{3}{2} $ \[\]
Answer
569.4k+ views
Hint: We use change of variable method and take $ u={{x}^{2}} $ which we differentiate with respect to $ x $ to get $ xdx=\dfrac{du}{2} $ . We change the limits of definite integral for the new variable $ u $ accordingly and the use following property of definite integration $ \int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx} $ . \[\]
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function is called integrand. We write integration in variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
Here $ c $ is an arbitrary real constant of integration. We also integral remains same even if we change the variable. It means for any variable $ u $ we have;
\[\int{f\left( u \right)}du=\int{f\left( u \right)}du\]
If we have composite function $ f\left( g\left( x \right) \right) $ and the differential of the function inside the bracket $ {{g}^{'}}\left( x \right) $ we can substitute the $ g\left( x \right) $ as by variable $ u $ which means $ g\left( x \right)=u $ we can integrate as
\[\int{f\left( g\left( x \right) \right){{g}^{'}}\left( x \right)}dx=\int{f\left( u \right)}du\]
The above method is called integration by substitution, u-substitution or change of variable method. When we integrate under within a limit $ \left[ a,b \right] $ we get the definite integral, \[\int_{a}^{b}{f\left( x \right)dx}=\left[ F\left( x \right) \right]_{a}^{b}=F\left( b \right)-F\left( a \right)\]
We also know the following identity of definite integration
\[\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}\]
We are asked in the question to evaluate following integral.
\[\begin{align}
& \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}}{\dfrac{x\sin {{x}^{2}}}{\sin {{x}^{2}}+\sin \left( \ln 6-{{x}^{2}} \right)}}dx \\
& \Rightarrow \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}}{\dfrac{\sin {{x}^{2}}\times xdx}{\sin {{x}^{2}}+\sin \left( \ln 6-{{x}^{2}} \right)}} \\
\end{align}\]
We see in the integrand that $ {{x}^{2}} $ is repeated in both numerator and denominator and we know that $ \dfrac{d}{dx}{{x}^{2}}=2x $ and $ x $ is also present numerator. So let use u-substitution method an take \[u={{x}^{2}}\]
We differentiate both side with respect to $ x $ and have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( u \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right) \\
& \Rightarrow \dfrac{du}{dx}=2x \\
& \Rightarrow du=2xdx \\
& \Rightarrow xdx=\dfrac{du}{2} \\
\end{align}\]
We also have to change the limits for new variable. So we have
\[\begin{align}
& x=\sqrt{\ln 2}\Rightarrow u={{x}^{2}}={{\left( \sqrt{\ln 2} \right)}^{2}}=\ln 2 \\
& x=\sqrt{\ln 3}\Rightarrow u={{x}^{2}}={{\left( \sqrt{\ln 3} \right)}^{2}}=\ln 3 \\
\end{align}\]
We replace the limits , the variable $ {{x}^{2}}=u $ and $ xdx=\dfrac{du}{2} $ in the integrand to have;
\[\begin{align}
& \Rightarrow \int_{\ln 2}^{\ln 3}{\dfrac{\sin u\times \dfrac{du}{2}}{\sin u+\sin \left( \ln 6-u \right)}} \\
& \Rightarrow \dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin u}{\sin u+\sin \left( \ln 6-u \right)}}du=I\left( \text{say} \right).......\left( 1 \right) \\
\end{align}\]
We use the property of definite integration \[\int_{a}^{b}{f\left( u \right)dx}=\int_{a}^{b}{f\left( a+b-u \right)du}\] for $ a=\ln 2,b=\ln 3 $ since $ a+b=\ln 2+\ln 3=\ln \left( 2\times 3 \right)=\ln 6 $ and $ f\left( u \right)=\sin u $ in the above step to have;
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin \left( \ln 6-u \right)}{\sin \left( \ln 6-u \right)+\sin \left( \ln 6-\left( \ln 6-u \right) \right)}}du \\
& \Rightarrow I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin \left( \ln 6-u \right)}{\sin \left( \ln 6-u \right)+\sin \left( u \right)}}du.......\left( 2 \right) \\
\end{align}\]
We add respective sides of equation (1) and (2) to have;
\[\begin{align}
& 2I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin u}{\sin u+\sin \left( \ln 6-u \right)}}du+\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin \left( \ln 6-u \right)}{\sin \left( \ln 6-u \right)+\sin \left( u \right)}}du \\
& \Rightarrow 2I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin u+\sin \left( \ln 6-u \right)}{\sin u+\sin \left( \ln 6-u \right)}du} \\
& \Rightarrow I=\dfrac{1}{4}\int_{\ln 2}^{\ln 3}{1\cdot du} \\
& \Rightarrow I=\dfrac{1}{4}\left[ u \right]_{\ln 2}^{\ln 3}=\dfrac{1}{4}\left( \ln 3-\ln 2 \right)=\dfrac{1}{4}\ln \left( \dfrac{3}{2} \right) \\
\end{align}\]
So the correct option is A. \[\]
Note:
We have used the logarithmic identity of product $ \ln \left( ab \right)=\ln a+\ln b $ and logarithmic identity of quotient $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ for $ a=\ln 3,b=\ln 2 $ in the solution. We must not forget to change the limits after we substitute the new variable $ u $ . We note that definite integration $ \int_{a}^{b}{f\left( x \right)} $ results in always a positive number and represents the area under the curve in the interval $ \left[ a,b \right] $ .
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function is called integrand. We write integration in variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
Here $ c $ is an arbitrary real constant of integration. We also integral remains same even if we change the variable. It means for any variable $ u $ we have;
\[\int{f\left( u \right)}du=\int{f\left( u \right)}du\]
If we have composite function $ f\left( g\left( x \right) \right) $ and the differential of the function inside the bracket $ {{g}^{'}}\left( x \right) $ we can substitute the $ g\left( x \right) $ as by variable $ u $ which means $ g\left( x \right)=u $ we can integrate as
\[\int{f\left( g\left( x \right) \right){{g}^{'}}\left( x \right)}dx=\int{f\left( u \right)}du\]
The above method is called integration by substitution, u-substitution or change of variable method. When we integrate under within a limit $ \left[ a,b \right] $ we get the definite integral, \[\int_{a}^{b}{f\left( x \right)dx}=\left[ F\left( x \right) \right]_{a}^{b}=F\left( b \right)-F\left( a \right)\]
We also know the following identity of definite integration
\[\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}\]
We are asked in the question to evaluate following integral.
\[\begin{align}
& \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}}{\dfrac{x\sin {{x}^{2}}}{\sin {{x}^{2}}+\sin \left( \ln 6-{{x}^{2}} \right)}}dx \\
& \Rightarrow \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}}{\dfrac{\sin {{x}^{2}}\times xdx}{\sin {{x}^{2}}+\sin \left( \ln 6-{{x}^{2}} \right)}} \\
\end{align}\]
We see in the integrand that $ {{x}^{2}} $ is repeated in both numerator and denominator and we know that $ \dfrac{d}{dx}{{x}^{2}}=2x $ and $ x $ is also present numerator. So let use u-substitution method an take \[u={{x}^{2}}\]
We differentiate both side with respect to $ x $ and have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( u \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right) \\
& \Rightarrow \dfrac{du}{dx}=2x \\
& \Rightarrow du=2xdx \\
& \Rightarrow xdx=\dfrac{du}{2} \\
\end{align}\]
We also have to change the limits for new variable. So we have
\[\begin{align}
& x=\sqrt{\ln 2}\Rightarrow u={{x}^{2}}={{\left( \sqrt{\ln 2} \right)}^{2}}=\ln 2 \\
& x=\sqrt{\ln 3}\Rightarrow u={{x}^{2}}={{\left( \sqrt{\ln 3} \right)}^{2}}=\ln 3 \\
\end{align}\]
We replace the limits , the variable $ {{x}^{2}}=u $ and $ xdx=\dfrac{du}{2} $ in the integrand to have;
\[\begin{align}
& \Rightarrow \int_{\ln 2}^{\ln 3}{\dfrac{\sin u\times \dfrac{du}{2}}{\sin u+\sin \left( \ln 6-u \right)}} \\
& \Rightarrow \dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin u}{\sin u+\sin \left( \ln 6-u \right)}}du=I\left( \text{say} \right).......\left( 1 \right) \\
\end{align}\]
We use the property of definite integration \[\int_{a}^{b}{f\left( u \right)dx}=\int_{a}^{b}{f\left( a+b-u \right)du}\] for $ a=\ln 2,b=\ln 3 $ since $ a+b=\ln 2+\ln 3=\ln \left( 2\times 3 \right)=\ln 6 $ and $ f\left( u \right)=\sin u $ in the above step to have;
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin \left( \ln 6-u \right)}{\sin \left( \ln 6-u \right)+\sin \left( \ln 6-\left( \ln 6-u \right) \right)}}du \\
& \Rightarrow I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin \left( \ln 6-u \right)}{\sin \left( \ln 6-u \right)+\sin \left( u \right)}}du.......\left( 2 \right) \\
\end{align}\]
We add respective sides of equation (1) and (2) to have;
\[\begin{align}
& 2I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin u}{\sin u+\sin \left( \ln 6-u \right)}}du+\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin \left( \ln 6-u \right)}{\sin \left( \ln 6-u \right)+\sin \left( u \right)}}du \\
& \Rightarrow 2I=\dfrac{1}{2}\int_{\ln 2}^{\ln 3}{\dfrac{\sin u+\sin \left( \ln 6-u \right)}{\sin u+\sin \left( \ln 6-u \right)}du} \\
& \Rightarrow I=\dfrac{1}{4}\int_{\ln 2}^{\ln 3}{1\cdot du} \\
& \Rightarrow I=\dfrac{1}{4}\left[ u \right]_{\ln 2}^{\ln 3}=\dfrac{1}{4}\left( \ln 3-\ln 2 \right)=\dfrac{1}{4}\ln \left( \dfrac{3}{2} \right) \\
\end{align}\]
So the correct option is A. \[\]
Note:
We have used the logarithmic identity of product $ \ln \left( ab \right)=\ln a+\ln b $ and logarithmic identity of quotient $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ for $ a=\ln 3,b=\ln 2 $ in the solution. We must not forget to change the limits after we substitute the new variable $ u $ . We note that definite integration $ \int_{a}^{b}{f\left( x \right)} $ results in always a positive number and represents the area under the curve in the interval $ \left[ a,b \right] $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

