
The value of \[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx\] is
A)\[n\]
B)\[n!\]
C)\[\left( n+1 \right)!\]
D) \[n\text{ }n!\]
Answer
605.1k+ views
Hint: Separate the given integral into two parts, evaluate each part separately and then add to get the result. Use the fact that\[\dfrac{d}{dx}\left( {}_{n}{{C}^{x+n}} \right)=(x+2)(x+3)...(x+n)+(x+1)(x+3)...(x+n)+...+(x+1)(x+2)...(x+n-1)\]
Complete step-by-step answer:
The integral given in the question is \[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx\].
We can see that the integral has two parts in it, given by,
\[\prod\limits_{r=1}^{n}{(x+r)}\] and \[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}\]
We have to solve these two parts separately and then evaluate the integral.
So, let us first solve the part \[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}\]. Since, it is summation, we can expand it for n number of terms.
Therefore, expanding the above summation we get,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{1}{x+1}+\dfrac{1}{x+2}+\dfrac{1}{x+3}+...\dfrac{1}{x+n}\]
Now, we can make the denominator common by making every denominator equal to \[(x+1)(x+2)(x+3)...(x+n)\]. We can do this by multiplying and dividing each term with appropriate terms as shown below,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{(x+2)(x+3)...(x+n)}{(x+1)(x+2)...(x+n)}+\dfrac{(x+1)(x+3)...(x+n)}{(x+1)(x+2)...(x+n)}+...+\dfrac{(x+1)(x+2)...(x+n-1)}{(x+1)(x+2)...(x+n)}\]
Clubbing the terms, we get the summation as,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{(x+2)(x+3)...(x+n)+(x+1)(x+3)...(x+n)+....+(x+1)(x+2)...(x+n-1)}{(x+1)(x+2)(x+3)...(x+n)}\]
From the above-obtained result, we can observe that it is of the form given below,
\[\dfrac{d}{dx}\left( {}_{n}{{C}^{x+n}} \right)=(x+2)(x+3)...(x+n)+(x+1)(x+3)...(x+n)+...+(x+1)(x+2)...(x+n-1)\]
So, we can rewrite the obtained result as,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{d}{dx}\left( C_{n}^{x+n} \right)\dfrac{1}{(x+1)(x+2)...(x+n)}\]
This is the result of the first part of the integral.
Therefore, the second part can be expanded as,
\[\prod\limits_{r=1}^{n}{(x+r)}=(x+1)(x+2)(x+3)...(x+n)\]
We have obtained the second part of the integral also.
Therefore, we can substitute the results and the integral becomes,
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\int\limits_{0}^{1}{\dfrac{(x+1)(x+2)...(x+n)}{(x+1)(x+2)...(x+n)}\dfrac{d}{dx}\left( C_{n}^{x+n} \right)}dx\]
Cancelling the like terms, we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\int\limits_{0}^{1}{\dfrac{d}{dx}\left( C_{n}^{x+n} \right)}dx\]
The derivative and integration gets cancelled, so we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\left[ C_{n}^{x+n} \right]_{0}^{1}\]
Applying the limits, we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\left[ C_{n}^{n+1}-C_{n}^{n+0} \right]\]
Now we know, \[C_{r}^{n}=\dfrac{n!}{r!(n-r)!}\], so the above equation can be written as,
\[\begin{align}
& \int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\dfrac{(n+1)!}{n!(n+1-n)!}-1 \\
& \Rightarrow \int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\dfrac{(n+1)!}{n!}-1 \\
& \Rightarrow \int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\dfrac{(n+1)n!}{n!}-1 \\
\end{align}\]
Cancelling the like terms, we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=n+1-1=n\]
This is our answer, which is option A).
Note: It is also very important to make the observation \[\dfrac{d}{dx}\left( {}_{n}{{C}^{x+n}} \right)=(x+2)(x+3)(x+4)...(x+n)+(x+1)(x+3)(x+4)...(x+n)....+(x+1)(x+2)(x+3)...(x+n-1)\]
Another approach is directly solving the integral as it is without separating the summation and production. In this way students can get confused.
Complete step-by-step answer:
The integral given in the question is \[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx\].
We can see that the integral has two parts in it, given by,
\[\prod\limits_{r=1}^{n}{(x+r)}\] and \[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}\]
We have to solve these two parts separately and then evaluate the integral.
So, let us first solve the part \[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}\]. Since, it is summation, we can expand it for n number of terms.
Therefore, expanding the above summation we get,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{1}{x+1}+\dfrac{1}{x+2}+\dfrac{1}{x+3}+...\dfrac{1}{x+n}\]
Now, we can make the denominator common by making every denominator equal to \[(x+1)(x+2)(x+3)...(x+n)\]. We can do this by multiplying and dividing each term with appropriate terms as shown below,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{(x+2)(x+3)...(x+n)}{(x+1)(x+2)...(x+n)}+\dfrac{(x+1)(x+3)...(x+n)}{(x+1)(x+2)...(x+n)}+...+\dfrac{(x+1)(x+2)...(x+n-1)}{(x+1)(x+2)...(x+n)}\]
Clubbing the terms, we get the summation as,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{(x+2)(x+3)...(x+n)+(x+1)(x+3)...(x+n)+....+(x+1)(x+2)...(x+n-1)}{(x+1)(x+2)(x+3)...(x+n)}\]
From the above-obtained result, we can observe that it is of the form given below,
\[\dfrac{d}{dx}\left( {}_{n}{{C}^{x+n}} \right)=(x+2)(x+3)...(x+n)+(x+1)(x+3)...(x+n)+...+(x+1)(x+2)...(x+n-1)\]
So, we can rewrite the obtained result as,
\[\sum\limits_{k=1}^{n}{\dfrac{1}{x+k}}=\dfrac{d}{dx}\left( C_{n}^{x+n} \right)\dfrac{1}{(x+1)(x+2)...(x+n)}\]
This is the result of the first part of the integral.
Therefore, the second part can be expanded as,
\[\prod\limits_{r=1}^{n}{(x+r)}=(x+1)(x+2)(x+3)...(x+n)\]
We have obtained the second part of the integral also.
Therefore, we can substitute the results and the integral becomes,
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\int\limits_{0}^{1}{\dfrac{(x+1)(x+2)...(x+n)}{(x+1)(x+2)...(x+n)}\dfrac{d}{dx}\left( C_{n}^{x+n} \right)}dx\]
Cancelling the like terms, we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\int\limits_{0}^{1}{\dfrac{d}{dx}\left( C_{n}^{x+n} \right)}dx\]
The derivative and integration gets cancelled, so we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\left[ C_{n}^{x+n} \right]_{0}^{1}\]
Applying the limits, we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\left[ C_{n}^{n+1}-C_{n}^{n+0} \right]\]
Now we know, \[C_{r}^{n}=\dfrac{n!}{r!(n-r)!}\], so the above equation can be written as,
\[\begin{align}
& \int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\dfrac{(n+1)!}{n!(n+1-n)!}-1 \\
& \Rightarrow \int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\dfrac{(n+1)!}{n!}-1 \\
& \Rightarrow \int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=\dfrac{(n+1)n!}{n!}-1 \\
\end{align}\]
Cancelling the like terms, we get
\[\int\limits_{0}^{1}{\left( \prod\limits_{r=1}^{n}{(x+r)} \right)\left( \sum\limits_{k=1}^{n}{\dfrac{1}{x+k}} \right)}dx=n+1-1=n\]
This is our answer, which is option A).
Note: It is also very important to make the observation \[\dfrac{d}{dx}\left( {}_{n}{{C}^{x+n}} \right)=(x+2)(x+3)(x+4)...(x+n)+(x+1)(x+3)(x+4)...(x+n)....+(x+1)(x+2)(x+3)...(x+n-1)\]
Another approach is directly solving the integral as it is without separating the summation and production. In this way students can get confused.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

