
The value of gravitational acceleration ‘g’ at a height ‘h’ above the Earth’s surface is $\dfrac{g}{4}$ then ( $R = $ radius of Earth)
A. $h = R$
B. $h = \dfrac{R}{2}$
C. $h = \dfrac{R}{3}$
D. $h = \dfrac{R}{4}$
Answer
555k+ views
Hint: The acceleration due to gravity is inversely proportional to the square of the distance between the center of the Earth and the body. For a body at Earth’s surface the acceleration due to gravity is given as: $g = \dfrac{{GM}}{{{R^2}}}$ Here, \[g\] is the acceleration due to gravity
And for a body at a height $'h'$ above the Earth’s surface is given as:
\[{g_h} = \dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}}\]
Here, \[{g_h}\] is the acceleration due to gravity
\[G\] is the universal gravitational constant
\[M\] is the mass of Earth
\[R\] is the radius of Earth
\[h\] is the height of the body above the surface.
We are given that \[{g_h} = \dfrac{g}{4}\] , equate both the equations and find the value of \[h\] in terms of radius
Complete step by step answer:
The acceleration due to gravity is given as:
$g = \dfrac{{GM}}{{{R^2}}}$ --equation \[1\]
The acceleration due to gravity at some height \[h\] above the Earth’s surface is given as:
\[{g_h} = \dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}}\] --equation \[2\]
We need to find the value of \[h\] such that \[{g_h} = \dfrac{g}{4}\] , as
\[{g_h} = \dfrac{g}{4}\]
From equation \[1\] and equation \[2\] , we get:
\[\dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}} = \dfrac{{GM}}{{4{R^2}}}\]
\[ \Rightarrow \dfrac{1}{{{{\left( {R + h} \right)}^2}}} = \dfrac{1}{{4{R^2}}}\]
\[ \Rightarrow 4{R^2} = {\left( {R + h} \right)^2}\]
\[ \Rightarrow {\left( {2R} \right)^2} = {\left( {R + h} \right)^2}\]
Taking square root on both sides, we get:
\[ \Rightarrow 2R = R + h\]
\[ \Rightarrow h = R\]
Thus, at a height of \[h = R\] above the Earth’s surface the acceleration due to gravity will be $\dfrac{g}{4}$ .
So, the correct answer is “Option A”.
Note:
As we move above the Earth’s surface the value of acceleration due to gravity decreases.
As we move below the surface of Earth, the acceleration due to gravity increases.
The value of acceleration due to gravity at height \[h = 2R\] will be $\dfrac{g}{9}$ .
The value of acceleration due to gravity is not constant but changes as we go to different locations on the Earth’s surface.
And for a body at a height $'h'$ above the Earth’s surface is given as:
\[{g_h} = \dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}}\]
Here, \[{g_h}\] is the acceleration due to gravity
\[G\] is the universal gravitational constant
\[M\] is the mass of Earth
\[R\] is the radius of Earth
\[h\] is the height of the body above the surface.
We are given that \[{g_h} = \dfrac{g}{4}\] , equate both the equations and find the value of \[h\] in terms of radius
Complete step by step answer:
The acceleration due to gravity is given as:
$g = \dfrac{{GM}}{{{R^2}}}$ --equation \[1\]
The acceleration due to gravity at some height \[h\] above the Earth’s surface is given as:
\[{g_h} = \dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}}\] --equation \[2\]
We need to find the value of \[h\] such that \[{g_h} = \dfrac{g}{4}\] , as
\[{g_h} = \dfrac{g}{4}\]
From equation \[1\] and equation \[2\] , we get:
\[\dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}} = \dfrac{{GM}}{{4{R^2}}}\]
\[ \Rightarrow \dfrac{1}{{{{\left( {R + h} \right)}^2}}} = \dfrac{1}{{4{R^2}}}\]
\[ \Rightarrow 4{R^2} = {\left( {R + h} \right)^2}\]
\[ \Rightarrow {\left( {2R} \right)^2} = {\left( {R + h} \right)^2}\]
Taking square root on both sides, we get:
\[ \Rightarrow 2R = R + h\]
\[ \Rightarrow h = R\]
Thus, at a height of \[h = R\] above the Earth’s surface the acceleration due to gravity will be $\dfrac{g}{4}$ .
So, the correct answer is “Option A”.
Note:
As we move above the Earth’s surface the value of acceleration due to gravity decreases.
As we move below the surface of Earth, the acceleration due to gravity increases.
The value of acceleration due to gravity at height \[h = 2R\] will be $\dfrac{g}{9}$ .
The value of acceleration due to gravity is not constant but changes as we go to different locations on the Earth’s surface.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

